Back to Search Start Over

Interlinking Bristol Based Models to Build Resilience to Climate Change

Authors :
James L. Webber
Slobodan Djordjević
Barry Evans
John Stevens
Daniel Sánchez-Muñoz
Albert S. Chen
José Domínguez-García
Rob Henderson
Source :
Sustainability, Volume 12, Issue 8, Sustainability, Vol 12, Iss 3233, p 3233 (2020)
Publication Year :
2020

Abstract

Expanding populations and increased urbanisation are causing a strain on cities worldwide as they become more frequently and more severely affected by extreme weather conditions. Critical services and infrastructure are feeling increasing pressure to be maintained in a sustainable way under these combined stresses. Methods to better cope with these demanding factors are greatly needed now, and with the predicted impacts of climate change, further adaptation will become essential for the future. All cities comprise a complex of interdependent systems representing critical operations that cannot function properly independently, or be fully understood in isolation of one another. The consequences of localised flooding can become much more widespread due to the inter-relation of these connected systems. Due to reliance upon one another and this connectedness, an all-encompassing assessment is appropriate. Different model representations are available for different services and integrating these enables consideration of these cascading effects. In the case study city of Bristol, 1D and 2D hydraulic modelling predicting the location and severity of flooding has been used in conjunction with modelling of road traffic and energy supply by linking models established for these respective sectors. This enables identification of key vulnerabilities to prioritise resources and enhance city resilience against future sea-level rise and the more intense rainfall conditions anticipated.

Details

ISSN :
20711050
Database :
OpenAIRE
Journal :
Sustainability
Accession number :
edsair.doi.dedup.....8b262190423e876c1c3f698db0ce4e7a
Full Text :
https://doi.org/10.3390/su12083233