Back to Search Start Over

Misfolded growth hormone causes fragmentation of the Golgi apparatus and disrupts endoplasmic reticulum-to-Golgi traffic

Authors :
Priscilla S. Dannies
Shilpa Patel
Patricia M. Hinkle
Thomas K. Graves
Source :
Journal of cell science. 114(Pt 20)
Publication Year :
2001

Abstract

In some individuals with autosomal dominant isolated growth hormone deficiency, one copy of growth hormone lacks amino acids 32-71 and is severely misfolded. We transfected COS7 cells with either wild-type human growth hormone or Delta 32-71 growth hormone and investigated subcellular localization of growth hormone and other proteins. Delta 32-71 growth hormone was retained in the endoplasmic reticulum, whereas wild-type hormone accumulated in the Golgi apparatus. When cells transfected with wild-type or Delta 32-71 growth hormone were dually stained for growth hormone and the Golgi markers beta-COP, membrin or 58K, wild-type growth hormone was colocalized with the Golgi markers, but beta-COP, membrin and 58K immunoreactivity was highly dispersed or undetectable in cells expressing Delta 32-71 growth hormone. Examination of alpha-tubulin immunostaining showed that the cytoplasmic microtubular arrangement was normal in cells expressing wild-type growth hormone, but microtubule-organizing centers were absent in nearly all cells expressing Delta 32-71 growth hormone. To determine whether Delta 32-71 growth hormone would alter trafficking of a plasma membrane protein, we cotransfected the cells with the thyrotropin-releasing hormone (TRH) receptor and either wild-type or Delta 32-71 growth hormone. Cells expressing Delta 32-71 growth hormone, unlike those expressing wild-type growth hormone, failed to show normal TRH receptor localization or binding. Expression of Delta 32-71 growth hormone also disrupted the trafficking of two secretory proteins, prolactin and secreted alkaline phosphatase. Delta 32-71 growth hormone only weakly elicited the unfolded protein response as indicated by induction of BiP mRNA. Pharmacological induction of the unfolded protein response partially prevented deletion mutant-induced Golgi fragmentation and partially restored normal TRH receptor trafficking. The ability of some misfolded proteins to block endoplasmic reticulum-to-Golgi traffic may explain their toxic effects on host cells and suggests possible strategies for therapeutic interventions.

Details

ISSN :
00219533
Volume :
114
Issue :
Pt 20
Database :
OpenAIRE
Journal :
Journal of cell science
Accession number :
edsair.doi.dedup.....8b0e91bb07d90d6fa502da7b22446c1d