Back to Search Start Over

A dynamically diluted alignment model reveals the impact of cell turnover on the plasticity of tissue polarity patterns

Authors :
Lutz Brusch
Karl B. Hoffmann
Anja Voss-Böhme
Jochen C. Rink
Source :
Journal of the Royal Society Interface
Publication Year :
2017
Publisher :
The Royal Society, 2017.

Abstract

The polarisation of cells and tissues is fundamental for tissue morphogenesis during biological development and regeneration. A deeper understanding of biological polarity pattern formation can be gained from the consideration of pattern reorganisation in response to an opposing instructive cue, which we here consider by example of experimentally inducible body axis inversions in planarian flatworms. Our dynamically diluted alignment model represents three processes: entrainment of cell polarity by a global signal, local cell-cell coupling aligning polarity among neighbours and cell turnover inserting initially unpolarised cells. We show that a persistent global orienting signal determines the final mean polarity orientation in this stochastic model. Combining numerical and analytical approaches, we find that neighbour coupling retards polarity pattern reorganisation, whereas cell turnover accelerates it. We derive a formula for an effective neighbour coupling strength integrating both effects and find that the time of polarity reorganisation depends linearly on this effective parameter and no abrupt transitions are observed. This allows to determine neighbour coupling strengths from experimental observations. Our model is related to a dynamic $8$-Potts model with annealed site-dilution and makes testable predictions regarding the polarisation of dynamic systems, such as the planarian epithelium.<br />Preprint as prior to first submission to Journal of the Royal Society Interface. 25 pages, 6 figures, plus supplement (18 pages, contains 1 table and 7 figures). A supplementary movie is available from https://dx.doi.org/10.6084/m9.figshare.c3887818

Details

ISSN :
17425662 and 17425689
Volume :
14
Database :
OpenAIRE
Journal :
Journal of The Royal Society Interface
Accession number :
edsair.doi.dedup.....8aeec610869f57b6001e5c7c0962b9d6
Full Text :
https://doi.org/10.1098/rsif.2017.0466