Back to Search
Start Over
Towards a symplectic version of the Chevalley restriction theorem
- Source :
- Compositio Mathematica, Compositio Mathematica, Foundation Compositio Mathematica, 2017, 153 (3), pp.647-666. 〈10.1112/S0010437X16008277〉, Compositio Mathematica, Foundation Compositio Mathematica, 2017, 153 (3), pp.647-666. ⟨10.1112/S0010437X16008277⟩
- Publication Year :
- 2017
- Publisher :
- HAL CCSD, 2017.
-
Abstract
- If $(G,V)$ is a polar representation with Cartan subspace $\mathfrak c$ and Weyl group $W$, it is shown that there is a natural morphism of Poisson schemes $\mathfrak c \oplus {\mathfrak c}^*/W \to V\oplus V^*/\!\!/\!\!/ G$. This morphism is conjectured to be an isomorphism of the underlying reduced varieties if $(G,V)$ is visible. The conjecture is proved for visible stable locally free polar representations and certain further examples.<br />Comment: 18 pages, final version
- Subjects :
- Polar representation
Symplectic variety
[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG]
01 natural sciences
Combinatorics
Mathematics - Algebraic Geometry
symbols.namesake
Morphism
0103 physical sciences
FOS: Mathematics
14L30, 53D20, 20G05, 20G20, 13A50
Representation Theory (math.RT)
0101 mathematics
MSC: 14L30, 53D20, 20G05, 20G20, 13A50
Mathematics::Representation Theory
Symplectic reduction
Algebraic Geometry (math.AG)
Moment map
Mathematics
Weyl group
Algebra and Number Theory
Conjecture
[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]
Reductive group
010102 general mathematics
[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG]
[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]
[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]
Mathematics - Symplectic Geometry
symbols
Symplectic Geometry (math.SG)
010307 mathematical physics
Isomorphism
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
Mathematics - Representation Theory
Symplectic geometry
Subjects
Details
- Language :
- English
- ISSN :
- 0010437X and 15705846
- Database :
- OpenAIRE
- Journal :
- Compositio Mathematica, Compositio Mathematica, Foundation Compositio Mathematica, 2017, 153 (3), pp.647-666. 〈10.1112/S0010437X16008277〉, Compositio Mathematica, Foundation Compositio Mathematica, 2017, 153 (3), pp.647-666. ⟨10.1112/S0010437X16008277⟩
- Accession number :
- edsair.doi.dedup.....8ae9d79c0a5483208fbd0b19ad3031bd
- Full Text :
- https://doi.org/10.1112/S0010437X16008277〉