Back to Search Start Over

Feature Based Algorithm Configuration: A Case Study with Differential Evolution

Authors :
Johann Dreo
Pierre Savéant
Marc Schoenauer
Nacim Belkhir
Machine Learning and Optimisation (TAO)
Laboratoire de Recherche en Informatique (LRI)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Thales Research and Technologies [Orsay] (TRT)
THALES [France]
Handl, J.
Hart, E.
Lewis, P.R.
López-Ibáñez, M.
Ochoa, G.
Paechter, B.
Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Paris-Sud - Paris 11 (UP11)-Laboratoire de Recherche en Informatique (LRI)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec
THALES
Source :
Parallel Problem Solving from Nature – PPSN XIV, Parallel Problem Solving from Nature – PPSN XIV, Sep 2016, Edinburgh, France. pp.156-165, ⟨10.1007/978-3-319-45823-6_15⟩, Parallel Problem Solving from Nature – PPSN XIV ISBN: 9783319458229, PPSN
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; Algorithm Configuration is still an intricate problem especially in the continuous black box optimization domain. This paper empirically investigates the relationship between continuous problem features (measuring different problem characteristics) and the best parameter configuration of a given stochastic algorithm over a bench of test functions — namely here, the original version of Differential Evolution over the BBOB test bench. This is achieved by learning an empirical performance model from the problem features and the algorithm parameters. This performance model can then be used to compute an empirical optimal parameter configuration from features values. The results show that reasonable performance models can indeed be learned, resulting in a better parameter configuration than a static parameter setting optimized for robustness over the test bench.

Details

Language :
English
ISBN :
978-3-319-45822-9
ISBNs :
9783319458229
Database :
OpenAIRE
Journal :
Parallel Problem Solving from Nature – PPSN XIV, Parallel Problem Solving from Nature – PPSN XIV, Sep 2016, Edinburgh, France. pp.156-165, ⟨10.1007/978-3-319-45823-6_15⟩, Parallel Problem Solving from Nature – PPSN XIV ISBN: 9783319458229, PPSN
Accession number :
edsair.doi.dedup.....8ae4f0a40dc0595b62d8e977c0838406
Full Text :
https://doi.org/10.1007/978-3-319-45823-6_15⟩