Back to Search
Start Over
Floating-point arithmetic
- Source :
- Acta Numerica, Acta Numerica, 2023, 32, pp.203-290. ⟨10.1017/S0962492922000101⟩
- Publication Year :
- 2023
- Publisher :
- Cambridge University Press (CUP), 2023.
-
Abstract
- Floating-point numbers have an intuitive meaning when it comes to physics-based numerical computations, and they have thus become the most common way of approximating real numbers in computers. The IEEE-754 Standard has played a large part in making floating-point arithmetic ubiquitous today, by specifying its semantics in a strict yet useful way as early as 1985. In particular, floating-point operations should be performed as if their results were first computed with an infinite precision and then rounded to the target format. A consequence is that floating-point arithmetic satisfies the ‘standard model’ that is often used for analysing the accuracy of floating-point algorithms. But that is only scraping the surface, and floating-point arithmetic offers much more.In this survey we recall the history of floating-point arithmetic as well as its specification mandated by the IEEE-754 Standard. We also recall what properties it entails and what every programmer should know when designing a floating-point algorithm. We provide various basic blocks that can be implemented with floating-point arithmetic. In particular, one can actually compute the rounding error caused by some floating-point operations, which paves the way to designing more accurate algorithms. More generally, properties of floating-point arithmetic make it possible to extend the accuracy of computations beyond working precision.
Details
- ISSN :
- 14740508 and 09624929
- Volume :
- 32
- Database :
- OpenAIRE
- Journal :
- Acta Numerica
- Accession number :
- edsair.doi.dedup.....8a81db438afc25763b2ff59c578340f8