Back to Search Start Over

Infidelity of DNA synthesis associated with bypass of apurinic sites

Authors :
Lawrence A. Loeb
Roeland M. Schaaper
Thomas A. Kunkel
Source :
Proceedings of the National Academy of Sciences. 80:487-491
Publication Year :
1983
Publisher :
Proceedings of the National Academy of Sciences, 1983.

Abstract

The mutagenic potential of apurinic sites in vivo has been studied by transfection of depurinated phi X174 DNA containing amber mutations into SOS-induced Escherichia coli spheroplasts. Mutagenicity is abolished by treatment of the depurinated DNA with an apurinic endonuclease from Hela cells, establishing the apurinic site as the mutagenic lesion. The frequency of copying apurinic sites in vitro was analyzed by measuring the extent of DNA synthesis using E. coli DNA polymerase I and avian myeloblastosis DNA polymerase. The inhibition of DNA synthesis by apurinic sites was less with avian myeloblastosis DNA polymerase, suggesting that this error-prone enzyme copies apurinic sites with greater frequency. Consistent with this conclusion is the observation that, upon transfection into (normal) spheroplasts, the reversion frequency of depurinated phi X174 am3 DNA copied with avian myeloblastosis virus DNA polymerase is much greater than that of the same DNA copied with E. coli DNA polymerase I. Sequence analysis of the DNA of 33 revertant phage produced by depurination indicates a preference for incorporation of deoxyadenosine opposite putative apurinic sites. The combined results indicate that mutagenesis resulting from apurinic sites is associated with bypass of these noncoding lesions during DNA synthesis.

Details

ISSN :
10916490 and 00278424
Volume :
80
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....8a6ec79a6f3e54cc47ef0170c6ac6b8e
Full Text :
https://doi.org/10.1073/pnas.80.2.487