Back to Search Start Over

Crosstalk between 14-3-3θ and AF4 enhances MLL-AF4 activity and promotes leukemia cell proliferation

Authors :
Maddalena Raia
Gabriella Esposito
Tiziana Fioretti
Francesco Salvatore
Mariateresa Zanobio
Armando Cevenini
Daniela Sarnataro
Fioretti, T.
Cevenini, A.
Zanobio, Mariateresa
Raia, M.
Sarnataro, D.
Salvatore, F.
Esposito, G.
Publication Year :
2019

Abstract

The t(4;11)(q21;q23) translocation characterizes a form of acute lymphoblastic leukemia with a poor prognosis. It results in a fusion gene encoding a chimeric transcription factor, MLL-AF4, that deregulates gene expression through a variety of still controversial mechanisms. To provide new insights into these mechanisms, we examined the interaction between AF4, the most common MLL fusion partner, and the scaffold protein 14-3-3θ, in the context of t(4;11)-positive leukemia. Protein-protein interactions were analyzed using immunoprecipitation and in vitro binding assays, and by fluorescence microscopy in t(4;11)-positive RS4;11 and MV4–11 leukemia cells and in HEK293 cells. Protein and mRNA expression levels were determined by Western blotting and RT-qPCR, respectively. A 5-bromo-2′-deoxyuridine assay and an annexin V/propidium iodide assay were used to assess proliferation and apoptosis rates, respectively, in t(4;11)-positive and control cells. Chromatin immunoprecipitation was performed to assess binding of 14-3-3θ and AF4 to a specific promoter element. We found that AF4 and 14-3-3θ are nuclear interactors, that 14-3-3θ binds Ser588 of AF4 and that 14-3-3θ forms a complex with MLL-AF4. In addition, we found that in t(4;11)-positive cells, 14-3-3θ knockdown decreased the expression of MLL-AF4 target genes, induced apoptosis and hampered cell proliferation. Moreover, we found that 14-3-3θ knockdown impaired the recruitment of AF4, but not of MLL-AF4, to target chromatin. Overall, our data indicate that the activity of the chimeric transcription factor MLL-AF4 depends on the cellular availability of 14-3-3θ, which triggers the transactivating function and subsequent degradation of AF4. From our data we conclude that the scaffold protein 14-3-3θ enhances the aberrant activity of the chimeric transcription factor MLL-AF4 and, therefore, represents a new player in the molecular pathogenesis of t(4;11)-positive leukemia and a new promising therapeutic target.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....8a1919c26c1565fc4f4945fce8dcbf0e