Back to Search Start Over

Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution

Authors :
Bin Liu
Peng Chen
Jiajian Gao
Hongbin Yang
Weizhen Cai
Xiaozhi Su
Yibo Yan
Li-Yong Gan
Wei Liu
Jun Gong
Zhiping Zeng
Junming Zhang
Hiroaki Matsumoto
Zheye Zhang
Source :
Nature Communications, Vol 12, Iss 1, Pp 1-11 (2021), Nature Communications
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

While inheriting the exceptional merits of single atom catalysts, diatomic site catalysts (DASCs) utilize two adjacent atomic metal species for their complementary functionalities and synergistic actions. Herein, a DASC consisting of nickel-iron hetero-diatomic pairs anchored on nitrogen-doped graphene is synthesized. It exhibits extraordinary electrocatalytic activities and stability for both CO2 reduction reaction (CO2RR) and oxygen evolution reaction (OER). Furthermore, the rechargeable Zn-CO2 battery equipped with such bifunctional catalyst shows high Faradaic efficiency and outstanding rechargeability. The in-depth experimental and theoretical analyses reveal the orbital coupling between the catalytic iron center and the adjacent nickel atom, which leads to alteration in orbital energy level, unique electronic states, higher oxidation state of iron, and weakened binding strength to the reaction intermediates, thus boosted CO2RR and OER performance. This work provides critical insights to rational design, working mechanism, and application of hetero-DASCs.<br />Diatomic site catalysts utilize two adjacent atomic metal species for their complementary functionalities and synergistic actions. Here, the authors report the orbital coupling of hetero-diatomic nickel-iron site boosts CO2 reduction reaction and oxygen evolution reaction.

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....8a0fb06aab29df25bd223e11e72f485e