Back to Search Start Over

Air temperature optima of vegetation productivity across global biomes

Authors :
Philippe Ciais
Xuhui Wang
Yiqi Luo
Ranga B. Myneni
Mengtian Huang
Hans Verbeeck
Mengdi Gao
Alessandro Cescatti
Joseph A. Berry
Trevor F. Keenan
Yongwen Liu
Shuli Niu
Ivan A. Janssens
Shushi Peng
Yue He
Tao Wang
Wenping Yuan
Xiaoying Shi
Matthias Cuntz
Jin Wu
Jiafu Mao
Kai Wang
Shilong Piao
Josep Peñuelas
Ramdane Alkama
Hannes De Deurwaerder
SILVA (SILVA)
Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL)-AgroParisTech
Strategic Priority Research Program (A) of the Chinese Academy of Sciences XDA20050101National Natural Science Foundation of China (NSFC)41530528National Key RAMP
D Program of China 2017YFA0604702United States Department of Energy (DOE)DE-FG02-04ER63917DE-FG02-04ER63911CFCAS Natural Sciences and Engineering Research Council of Canada BIOCAP CGIAR Natural Resources Canada European Union (EU) FAO-GTOS-CO iLEAPS Max Planck Institute for Biogeochemistry National Science Foundation (NSF) University of Tuscia Universite Laval United States Department of Energy (DOE) European Research Council (ERC)ERC-SyG-2013-610028 IMBALANCE-PFrench National Research Agency (ANR) Flemish Community through the Research Council of the University of Antwerp NASA Terrestrial Ecology Program IDS Award NNH17AE86ITerrestrial Ecosystem Science Scientific Focus Area project through the Terrestrial Ecosystem Science Program in the Climate and Environmental Sciences Division of the Biological and Environmental Research Program in the US Department of Energy Office of S United States Department of Energy (DOE)DE-AC05-00OR22725French National Research Agency (ANR)ANR-11-LABX-0002-01
Peking University [Beijing]
Chinese Academy of Sciences
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
ICOS-ATC (ICOS-ATC)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Centre for Research on Ecology and Forestry Applications
Consejo Superior de Investigaciones Científicas
University of California [Berkeley] (UC Berkeley)
University of California (UC)
Department of Global Ecology [Carnegie] (DGE)
Carnegie Institution for Science
Oak Ridge National Laboratory
Joint Research Centre (JRC)
European Commission
Institut National de la Recherche Agronomique (INRA)-AgroParisTech-Université de Lorraine (UL)
Universiteit Gent = Ghent University (UGENT)
Northern Arizona University [Flagstaff]
Boston University [Boston] (BU)
Sun Yat-Sen University [Guangzhou] (SYSU)
Brookhaven National Laboratory [Upton, NY] (BNL)
UT-Battelle, LLC-Stony Brook University [SUNY] (SBU)
State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE)
University of Hong Kong
University of Antwerp (UA)
D Program of China 2017YFA0604702United States Department of Energy (DOE)DE-FG02-04ER63917DE-FG02-04ER63911CFCAS Natural Sciences and Engineering Research Council of Canada BIOCAP CGIAR Natural Resources Canada FAO-GTOS-CO iLEAPS Max Planck Institute for Biogeochemistry National Science Foundation (NSF) University of Tuscia Universite Laval Flemish Community through the Research Council of the University of Antwerp NASA Terrestrial Ecology Program IDS Award NNH17AE86ITerrestrial Ecosystem Science Scientific Focus Area project through the Terrestrial Ecosystem Science Program in the Climate and Environmental Sciences Division of the Biological and Environmental Research Program in the US Department of Energy Office of S United States Department of Energy (DOE) DE-AC05-00OR22725
ANR-11-LABX-0002,ARBRE,Recherches Avancées sur l'Arbre et les Ecosytèmes Forestiers(2011)
European Project: 610028,EC:FP7:ERC,ERC-2013-SyG,IMBALANCE-P(2014)
Peking University
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
University of California [Berkeley]
University of California
Carnegie Institution for Science [Washington]
Ghent University
U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU)
State University of New York (SUNY)-State University of New York (SUNY)
Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)
Department of Global Ecology [Carnegie Institution]
Sun Yat-Sen University (SYSU)
Brookhaven National Laboratory
Source :
Nature Ecology & Evolution, Nature Ecology & Evolution, Nature, 2019, 3 (5), pp.772-779. ⟨10.1038/s41559-019-0838-x⟩, Nature Ecology & Evolution, 2019, 3 (5), pp.772-779. ⟨10.1038/s41559-019-0838-x⟩, Nature ecology & evolution, vol 3, iss 5, Nature ecology & evolution, Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Recercat. Dipósit de la Recerca de Catalunya, instname
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

U nderstanding how photosynthesis responds to warming has been a focus in plant research in recent decades, and most of the existing knowledge comes from leaf-scale measurements 1-4. Most leaf-scale temperature response curves show that photosyn-thetic capacity increases with temperature up to an optimum temperature (T opt leaf), which typically occurs in the 30-40 °C temperature range 5,6. Above this optimum temperature, foliar photosynthetic capacity sharply declines as electron-transport and Rubisco enzy-matic capacities become impaired 7. Field et al. 8 suggested that ecosystem-scale optimum temperature T opt eco may differ from T opt leaf. At the ecosystem scale, elevated air temperatures do limit canopy photosynthesis by processes other than leaf carboxylation rates. For instance, elevated air temperatures may accelerate leaf ageing and increase leaf thickness (phenology; for example, ref. 9) and control stomatal closure because a higher temperature usually comes with a higher vapour pressure deficit (VPD) 10. In a more extreme case, warming-induced water stress could suppress canopy photosyn-thesis through partial hydraulic failure (hydraulics) by cavitation (for example, ref. 11). Empirical leaf-scale photosynthesis-temperature relationships 12 have been directly incorporated into global ecosystem models, with variants to account for acclimation, that is, a temporal adjustment of optimum photosynthetic temperature to air temperature during growth 5,13,14. This direct scaling of temperature responses from leaves to ecosystems partly determines model projections of gross primary productivity (GPP) and CO 2 uptake by terrestrial ecosystems in climatic scenarios. Verifying the existence of T opt eco in real-world ecosystems, defining its spatial distribution across and within biomes, and understanding the relationships between T opt eco , prevailing air temperature and T opt leaf are important for evaluating models and understanding the impacts of various climatic warming targets on ecosystem productivity. In this study, we formulate and test the following hypotheses: (1) T opt eco is higher for biomes when air temperature during growth is warmer, (2) T opt eco is lower than T opt leaf for any given ecosystem because the limitations mentioned earlier of stomatal conductance and phenology emerge before temperature begins to impair foliar pho-tosynthetic capacity, and (3) tropical forests already operate near a high T opt eco , above which canopy photosynthesis may decrease with even moderate air temperature warming 15,16. Here, we defined T opt eco as the daytime air temperature at which GPP is highest over a period of several years, and thus T opt eco can be empirically determined from productivity observations and proxies (see Methods). Results and discussion We first applied this approach on time series of daily GPP derived from CO 2 flux measurements at 153 globally distributed eddy cova-riance sites and found that a robust estimate of T opt eco could be derived The global distribution of the optimum air temperature for ecosystem-level gross primary productivity (T opt eco) is poorly understood , despite its importance for ecosystem carbon uptake under future warming. We provide empirical evidence for the existence of such an optimum, using measurements of in situ eddy covariance and satellite-derived proxies, and report its global distribution. T opt eco is consistently lower than the physiological optimum temperature of leaf-level photosynthetic capacity, which typically exceeds 30 °C. The global average T opt eco is estimated to be 23 ± 6 °C, with warmer regions having higher T opt eco values than colder regions. In tropical forests in particular, T opt eco is close to growing-season air temperature and is projected to fall below it under all scenarios of future climate, suggesting a limited safe operating space for these ecosystems under future warming.

Details

Language :
English
ISSN :
2397334X
Database :
OpenAIRE
Journal :
Nature Ecology & Evolution, Nature Ecology & Evolution, Nature, 2019, 3 (5), pp.772-779. ⟨10.1038/s41559-019-0838-x⟩, Nature Ecology & Evolution, 2019, 3 (5), pp.772-779. ⟨10.1038/s41559-019-0838-x⟩, Nature ecology & evolution, vol 3, iss 5, Nature ecology & evolution, Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Recercat. Dipósit de la Recerca de Catalunya, instname
Accession number :
edsair.doi.dedup.....89f6811cdf4e786bc3d9ba776a9905b8