Back to Search
Start Over
Benefits of the Adaptive algorithm for retracking altimeter nadir echoes: results from simulations and CFOSAT/SWIM observations
- Source :
- IEEE Transactions on Geoscience and Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers, 2021, 59 (12), pp.9927-9940. ⟨10.1109/TGRS.2021.3064236⟩
- Publication Year :
- 2020
- Publisher :
- HAL CCSD, 2020.
-
Abstract
- The accuracy of sea surface parameters retrieved from altimeter missions is predominantly governed by the choice of the so-called ``retracking'' algorithm, i.e., the model and inversion method implemented to obtain the surface parameters from the backscattered waveform. For continuity reasons, the choice of space agencies is usually to apply the same retracker from one satellite mission to the other to ensure long-time homogeneous series. In this article, taking the opportunity of a new configuration of the nadir pointing measurements onboard the recently launched China France Oceanography Satellite (CFOSAT) with the Surface Waves Investigation and Monitoring (SWIM) instrument (Hauser et al., 2020), the retracking method was upgraded, by implementing a novel algorithm, called ``Adaptive'' retracker. It combines the improvements brought by Poisson et al., (2018) for the estimation of surface parameters from peaked waveforms over sea ice, improvements in the way the instrumental characteristics are considered in the model (mispointing, point target response) and a more accurate consideration of speckle statistics. In this article, we first show from simulations carried out in the instrumental configuration of SWIM that the Adaptive algorithm has better accuracy and performance than the classical MLE4 algorithm. Then, the geophysical parameters obtained with real data from SWIM are analyzed with comparisons to reference data sets (model and products from altimeters). We show that this new algorithm has several benefits with respect to the classical MLE4 method: no need of lookup tables to correct biases, significant noise reduction on all geophysical variables especially the significant wave height, and performance of inversion over a large set of echo shapes, resulting from standard oceanic scenes as well as highly specular conditions such as over bloom or sea ice.
- Subjects :
- 010504 meteorology & atmospheric sciences
Computer science
0211 other engineering and technologies
Inverse transform sampling
02 engineering and technology
01 natural sciences
law.invention
law
altimetry
14. Life underwater
Altimeter
Electrical and Electronic Engineering
Radar
Point target
Physics::Atmospheric and Oceanic Physics
[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
021101 geological & geomatics engineering
0105 earth and related environmental sciences
Remote sensing
validation
Adaptive algorithm
[SDE.IE]Environmental Sciences/Environmental Engineering
CFOSAT
SWIM
Inversion (meteorology)
ocean
retracking algorithm
13. Climate action
Lookup table
General Earth and Planetary Sciences
nadir
Significant wave height
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
radar
Subjects
Details
- Language :
- English
- ISSN :
- 01962892
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Geoscience and Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers, 2021, 59 (12), pp.9927-9940. ⟨10.1109/TGRS.2021.3064236⟩
- Accession number :
- edsair.doi.dedup.....89be088e89ee39f5c8378b801c9934c4
- Full Text :
- https://doi.org/10.1109/TGRS.2021.3064236⟩