Back to Search
Start Over
Competing Interfacial Reconstruction Mechanisms in La0.7Sr0.3MnO3/SrTiO3 Heterostructures
- Source :
- ACS applied materialsinterfaces. 8(36)
- Publication Year :
- 2016
-
Abstract
- Interface coupling between complex oxides offers unique possibilities to tailor materials properties and stabilize novel ground states. Understanding the structural reconstruction of the corner-shared octahedral framework and the charge redistribution are crucial for controlling interfacial properties in oxide electronics. Here, we study the interfacial oxygen octahedral behavior in La0.7Sr0.3MnO3/SrTiO3 heterostructure, by directly imaging the oxygen octahedra at the atomic scale and extracting the structural parameters. We combine these experimental results with electronic structure calculations to elucidate the effect of reconstructed MnO6 octahedral geometry on increased interfacial magnetization and conductivity. The Mn valence profiles near the interface are quantitatively analyzed and compared at variant temperatures, revealing the insulating nature of interfacial manganite with reduced Mn valence. This study suggests a pathway to manipulate the interfacial properties and creation of new ground states in complex oxide heterostructures by tuning competing structural and electronic parameters.
- Subjects :
- Valence (chemistry)
Materials science
Nanotechnology
Heterojunction
02 engineering and technology
Electronic structure
Conductivity
021001 nanoscience & nanotechnology
Manganite
01 natural sciences
Atomic units
Magnetization
Chemical physics
0103 physical sciences
Octahedral molecular geometry
General Materials Science
010306 general physics
0210 nano-technology
Subjects
Details
- ISSN :
- 19448252
- Volume :
- 8
- Issue :
- 36
- Database :
- OpenAIRE
- Journal :
- ACS applied materialsinterfaces
- Accession number :
- edsair.doi.dedup.....89b9a4b87e591a89f13367ce241a4c4d