Back to Search Start Over

Super-resolved spatial transcriptomics by deep data fusion

Authors :
Alma Andersson
Paul A. Khavari
Guy E. Boeckxstaens
James Zou
Reza Mirzazadeh
Joakim Lundeberg
Joseph Bergenstråhle
Kim Thrane
Jonas Maaskola
Xesús Abalo
Bryan He
Ludvig Larsson
Ludvig Bergenstråhle
Nathalie Stakenborg
Andrew L. Ji
Publication Year :
2022
Publisher :
NATURE PORTFOLIO, 2022.

Abstract

Current methods for spatial transcriptomics are limited by low spatial resolution. Here we introduce a method that integrates spatial gene expression data with histological image data from the same tissue section to infer higher-resolution expression maps. Using a deep generative model, our method characterizes the transcriptome of micrometer-scale anatomical features and can predict spatial gene expression from histology images alone. ispartof: NATURE BIOTECHNOLOGY vol:40 issue:4 pages:476-+ ispartof: location:United States status: published

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....8986085d538b10d42347ae185cc584de