Back to Search Start Over

Corrected small basis set Hartree-Fock method for large systems

Authors :
Stefan Grimme
Rebecca Sure
Source :
Journal of computational chemistry. 34(19)
Publication Year :
2013

Abstract

A quantum chemical method based on a Hartree-Fock calculation with a small Gaussian AO basis set is presented. Its main area of application is the computation of structures, vibrational frequencies, and noncovalent interaction energies in huge molecular systems. The method is suggested as a partial replacement of semiempirical approaches or density functional theory (DFT) in particular when self-interaction errors are acute. In order to get accurate results three physically plausible atom pair-wise correction terms are applied for London dispersion interactions (D3 scheme), basis set superposition error (gCP scheme), and short-ranged basis set incompleteness effects. In total nine global empirical parameters are used. This so-called Hartee-Fock-3c (HF-3c) method is tested for geometries of small organic molecules, interaction energies and geometries of noncovalently bound complexes, for supramolecular systems, and protein structures. In the majority of realistic test cases good results approaching large basis set DFT quality are obtained at a tiny fraction of computational cost.

Details

ISSN :
1096987X
Volume :
34
Issue :
19
Database :
OpenAIRE
Journal :
Journal of computational chemistry
Accession number :
edsair.doi.dedup.....894caad3b58b278536ee9bab3c7a2752