Back to Search
Start Over
Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae
- Source :
- Biochim Biophys Acta Mol Cell Biol Lipids
- Publication Year :
- 2019
-
Abstract
- The type IV P-type ATPases (P4-ATPases) thus far characterized are lipid flippases that transport specific substrates, such as phosphatidylserine (PS) and phosphatidylethanolamine (PE), from the exofacial leaflet to the cytofacial leaflet of membranes. This transport activity generates compositional asymmetry between the two leaflets important for signal transduction, cytokinesis, vesicular transport, and host-pathogen interactions. Most P4-ATPases function as a heterodimer with a β-subunit from the Cdc50 protein family, but Neo1 from Saccharomyces cerevisiae and its metazoan orthologs lack a β-subunit requirement and it is unclear how these proteins transport substrate. Here we tested if residues linked to lipid substrate recognition in other P4-ATPases also contribute to Neo1 function in budding yeast. Point mutations altering entry gate residues in the first (Q209A) and fourth (S457Q) transmembrane segments of Neo1, where phospholipid substrate would initially be selected, disrupt PS and PE membrane asymmetry, but do not perturb growth of cells. Mutation of both entry gate residues inactivates Neo1, and cells expressing this variant are inviable. We also identified a gain-of-function mutation in the second transmembrane segment of Neo1 (Neo1[Y222S]), predicted to help form the entry gate, that substantially enhances Neo1's ability to replace the function of a well characterized phospholipid flippase, Drs2, in establishing PS and PE asymmetry. These results suggest a common mechanism for substrate recognition in widely divergent P4-ATPases.
- Subjects :
- Saccharomyces cerevisiae Proteins
Saccharomyces cerevisiae
Calcium-Transporting ATPases
Phosphatidylserines
Article
Substrate Specificity
03 medical and health sciences
chemistry.chemical_compound
0302 clinical medicine
Point Mutation
Phospholipid Transfer Proteins
Molecular Biology
030304 developmental biology
Phosphatidylethanolamine
Adenosine Triphosphatases
0303 health sciences
biology
Phosphatidylethanolamines
Cell Membrane
Membrane Transport Proteins
Cell Biology
Flippase
Phosphatidylserine
biology.organism_classification
Transmembrane protein
Cell biology
Vesicular transport protein
Transmembrane domain
chemistry
Mutagenesis
Gain of Function Mutation
030217 neurology & neurosurgery
Cytokinesis
Subjects
Details
- ISSN :
- 18792618
- Volume :
- 1865
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Biochimica et biophysica acta. Molecular and cell biology of lipids
- Accession number :
- edsair.doi.dedup.....8944d7b050a09727e36d9df12bfa34e9