Back to Search
Start Over
Artificial Intelligence and Capsule Endoscopy: Automatic Detection of Small Bowel Blood Content Using a Convolutional Neural Network
- Source :
- GE: Portuguese Journal of Gastroenterology, Pp 1-8 (2021)
- Publication Year :
- 2021
-
Abstract
- Capsule endoscopy has revolutionized the management of patients with obscure gastrointestinal bleeding. Nevertheless, reading capsule endoscopy images is time-consuming and prone to overlooking significant lesions, thus limiting its diagnostic yield. We aimed to create a deep learning algorithm for automatic detection of blood and hematic residues in the enteric lumen in capsule endoscopy exams.A convolutional neural network was developed based on a total pool of 22,095 capsule endoscopy images (13,510 images containing luminal blood and 8,585 of normal mucosa or other findings). A training dataset comprising 80% of the total pool of images was defined. The performance of the network was compared to a consensus classification provided by 2 specialists in capsule endoscopy. Subsequently, we evaluated the performance of the network using an independent validation dataset (20% of total image pool), calculating its sensitivity, specificity, accuracy, and precision.Our convolutional neural network detected blood and hematic residues in the small bowel lumen with an accuracy and precision of 98.5 and 98.7%, respectively. The sensitivity and specificity were 98.6 and 98.9%, respectively. The analysis of the testing dataset was completed in 24 s (approximately 184 frames/s).We have developed an artificial intelligence tool capable of effectively detecting luminal blood. The development of these tools may enhance the diagnostic accuracy of capsule endoscopy when evaluating patients presenting with obscure small bowel bleeding.A endoscopia por cápsula revolucionou a abordagem a doentes com hemorragia digestiva obscura. No entanto, a leitura de imagens de endoscopia por cápsula é morosa, havendo suscetibilidade para a perda de lesões significativas, limitando desta forma a sua eficácia diagnóstica. Este estudo visou a criação de um algoritmo deFoi desenvolvida uma rede neural convolucional com base num conjunto de 22,095 imagens de endoscopia de cápsula (13,510 imagens contendo sangue e 8,585 mucosa normal ou outros achados). Foi construído um grupo de imagens para treino, compreendendo 80% do total de imagens. O desempenho da rede foi comparado com a classificação consenso de dois especialistas em endoscopia por cápsula. Posteriormente, o desempenho da rede foi avaliado usando os restantes 20% de imagens. Foi calculada a sua sensibilidade, especificidade, exatidão e precisão.O algoritmo detetou sangue e resíduos hemáticos no lúmen do intestino delgado com uma exatidão e precisão de 98.5% e 98.7%, respetivamente. A sensibilidade e especificidade foram 98.6% e 98.9%, respetivamente. A análise do conjunto de usado para teste da rede foi concluída em 24 segundos (aproximadamente 184 frames/s).Foi desenvolvida uma ferramenta de inteligência artificial capaz de detetar efetivamente o sangue luminal. O desenvolvimento dessas ferramentas pode aumentar a precisão do diagnóstico da endoscopia por cápsula ao avaliar pacientes que apresentam sangramento obscuro do intestino delgado.
- Subjects :
- business.industry
capsule endoscopy
Gastroenterology
gastrointestinal bleeding
Pattern recognition
RC799-869
Diseases of the digestive system. Gastroenterology
artificial intelligence
Convolutional neural network
law.invention
Capsule endoscopy
law
small bowel
convolutional neural networks
General Earth and Planetary Sciences
Medicine
Artificial intelligence
business
General Environmental Science
Subjects
Details
- ISSN :
- 23414545
- Volume :
- 29
- Issue :
- 5
- Database :
- OpenAIRE
- Journal :
- GE Portuguese journal of gastroenterology
- Accession number :
- edsair.doi.dedup.....89336128e65ea44e58c5c1a9b1451ec2