Back to Search Start Over

Joint classification of multiresolution and multisensor data using a multiscale Markov mesh model

Authors :
Sebastiano B. Serpico
Alessandro Montaldo
Gabriele Moser
Ihsen Hedhli
Josiane Zerubia
Luca Fronda
University of Genoa (UNIGE)
Université Laval [Québec] (ULaval)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)
Models of spatio-temporal structure for high-resolution image processing (AYIN)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Università degli studi di Genova = University of Genoa (UniGe)
Source :
IGARSS 2019-IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019-IEEE International Geoscience and Remote Sensing Symposium, Jul 2019, Yokohama, Japan, HAL, IGARSS
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; In this paper, the problem of the classification of multireso-lution and multisensor remotely sensed data is addressed by proposing a multiscale Markov mesh model. Multiresolution and multisensor fusion are jointly achieved through an explicitly hierarchical probabilistic graphical classifier, which uses a quadtree structure to model the interactions across different spatial resolutions, and a symmetric Markov mesh random field to deal with contextual information at each scale and favor applicability to very high resolution imagery. Differently from previous hierarchical Markovian approaches, here, data collected by distinct sensors are fused through either the graph topology itself (across its layers) or decision tree ensemble methods (within each layer). The proposed model allows taking benefit of strong analytical properties, most remarkably causality, which make it possible to apply time-efficient non-iterative inference algorithms.

Details

Language :
English
Database :
OpenAIRE
Journal :
IGARSS 2019-IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019-IEEE International Geoscience and Remote Sensing Symposium, Jul 2019, Yokohama, Japan, HAL, IGARSS
Accession number :
edsair.doi.dedup.....892ca6e3471f70863d4412012c601916