Back to Search
Start Over
Aplexone targets the HMG-CoA reductase pathway and differentially regulates arteriovenous angiogenesis
- Source :
- Development-The Company of Biologists, 138(6), 1173-1181. Company of Biologists Ltd
- Publication Year :
- 2011
- Publisher :
- The Company of Biologists, 2011.
-
Abstract
- Arterial and venous endothelial cells exhibit distinct molecular characteristics at early developmental stages. These lineage-specific molecular programs are instructive to the development of distinct vascular architectures and physiological conditions of arteries and veins, but their roles in angiogenesis remain unexplored. Here, we show that the caudal vein plexus in zebrafish forms by endothelial cell sprouting, migration and anastomosis, providing a venous-specific angiogenesis model. Using this model, we have identified a novel compound, aplexone, which effectively suppresses venous, but not arterial, angiogenesis. Multiple lines of evidence indicate that aplexone differentially regulates arteriovenous angiogenesis by targeting the HMG-CoA reductase (HMGCR) pathway. Treatment with aplexone affects the transcription of enzymes in the HMGCR pathway and reduces cellular cholesterol levels. Injecting mevalonate, a metabolic product of HMGCR, reverses the inhibitory effect of aplexone on venous angiogenesis. In addition, aplexone treatment inhibits protein prenylation and blocking the activity of geranylgeranyl transferase induces a venous angiogenesis phenotype resembling that observed in aplexone-treated embryos. Furthermore, endothelial cells of venous origin have higher levels of proteins requiring geranylgeranylation than arterial endothelial cells and inhibiting the activity of Rac or Rho kinase effectively reduces the migration of venous, but not arterial, endothelial cells. Taken together, our findings indicate that angiogenesis is differentially regulated by the HMGCR pathway via an arteriovenous-dependent requirement for protein prenylation in zebrafish and human endothelial cells.
- Subjects :
- medicine.medical_specialty
Embryo, Nonmammalian
Angiogenesis
Drug Evaluation, Preclinical
Neovascularization, Physiologic
Angiogenesis Inhibitors
Biology
Substrate Specificity
Veins
Animals, Genetically Modified
Neovascularization
Drug Delivery Systems
Geranylgeranylation
Internal medicine
medicine
Animals
Humans
Molecular Targeted Therapy
Molecular Biology
Research Articles
Cells, Cultured
Zebrafish
Sulfonamides
Arteries
Cell biology
Endothelial stem cell
Endocrinology
Germ cell migration
HMG-CoA reductase
biology.protein
Protein prenylation
Hydroxymethylglutaryl CoA Reductases
Hydroxymethylglutaryl-CoA Reductase Inhibitors
medicine.symptom
Signal transduction
Signal Transduction
Developmental Biology
Subjects
Details
- ISSN :
- 14779129 and 09501991
- Volume :
- 138
- Database :
- OpenAIRE
- Journal :
- Development
- Accession number :
- edsair.doi.dedup.....8923309289f6a5a6f2ccf32f8a1f8b05
- Full Text :
- https://doi.org/10.1242/dev.054049