Back to Search Start Over

Magnetization structure and its temporal change of Miyakejima volcano, Japan, revealed by uncrewed aerial vehicle aeromagnetic survey

Authors :
Koyama, T.
Kaneko, T.
Ohminato, T.
Watanabe, A.
Honda, Y.
Akiyama, T.
Tanaka, S.
Source :
XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Publication Year :
2023
Publisher :
GFZ German Research Centre for Geosciences, 2023.

Abstract

Miyakejima volcano experienced its latest eruption in 2000 with the summit subsidence, and the next event is expected in the near future. An aeromagnetic survey in Miyakejima was conducted in March 2021 in order to investigate the current state of its magnetization structure to identify the potential for another eruption and, thus, mitigate volcanic disaster. The survey flight was conducted using an uncrewed aerial vehicle (UAV), a multirotor drone, to deploy a scalar magnetometer. After processing geomagnetic field data from this survey, in combination with data from previous surveys conducted by using another UAV, an uncrewed helicopter, the average magnetization intensity was determined to be 12.4 A/m. Further, the surrounding area of the crater was relatively highly magnetized; however, the crater rim had a low magnetization intensity. Temporal variation was detected between 2014 and 2021 and dominated the central part of the observation area. Decreased magnetization intensity was identified beneath the caldera, which may become recently demagnetized due to heat supply traveling through fractures in the impermeable layer from the deep heat reservoir.<br />The 28th IUGG General Assembly (IUGG2023) (Berlin 2023)

Details

Database :
OpenAIRE
Journal :
XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Accession number :
edsair.doi.dedup.....8912fe89207d3e5d442f51fa9f3a21e6
Full Text :
https://doi.org/10.57757/iugg23-0278