Back to Search Start Over

GANimation: One-Shot Anatomically Consistent Facial Animation

Authors :
Francesc Moreno-Noguer
Aleix M. Martinez
Alberto Sanfeliu
Antonio Agudo
Albert Pumarola
Agencia Estatal de Investigación (España)
Amazon
Ministerio de Economía y Competitividad (España)
Ministerio de Ciencia, Innovación y Universidades (España)
European Commission
National Institutes of Health (US)
Universitat Politècnica de Catalunya. Doctorat en Automàtica, Robòtica i Visió
Institut de Robòtica i Informàtica Industrial
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. VIS - Visió Artificial i Sistemes Intel·ligents
Universitat Politècnica de Catalunya. ROBiri - Grup de Robòtica de l'IRI
Source :
UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Digital.CSIC. Repositorio Institucional del CSIC, instname
Publication Year :
2019
Publisher :
Springer Nature, 2019.

Abstract

Recent advances in generative adversarial networks (GANs) have shown impressive results for the task of facial expression synthesis. The most successful architecture is StarGAN (Choi et al. in CVPR, 2018), that conditions GANs’ generation process with images of a specific domain, namely a set of images of people sharing the same expression. While effective, this approach can only generate a discrete number of expressions, determined by the content and granularity of the dataset. To address this limitation, in this paper, we introduce a novel GAN conditioning scheme based on action units (AU) annotations, which describes in a continuous manifold the anatomical facial movements defining a human expression. Our approach allows controlling the magnitude of activation of each AU and combining several of them. Additionally, we propose a weakly supervised strategy to train the model, that only requires images annotated with their activated AUs, and exploit a novel self-learned attention mechanism that makes our network robust to changing backgrounds, lighting conditions and occlusions. Extensive evaluation shows that our approach goes beyond competing conditional generators both in the capability to synthesize a much wider range of expressions ruled by anatomically feasible muscle movements, as in the capacity of dealing with images in the wild. The code of this work is publicly available at https://github.com/albertpumarola/GANimation.<br />This work is partially supported by an Amazon Research Award, by the Spanish Ministry of Economy and Competitiveness under Projects HuMoUR TIN2017-90086-R, ColRobTransp DPI2016-78957 and María de Maeztu Seal of Excellence MDM-2016-0656; by the EU Project AEROARMS ICT-2014-1-644271; and by the Grant R01-DC- 014498 of the National Institute of Health. We also thank Nvidia for hardware donation under the GPU Grant Program.

Details

ISSN :
15731405 and 09205691
Database :
OpenAIRE
Journal :
International Journal of Computer Vision 128: 698-713 (2020)
Accession number :
edsair.doi.dedup.....890a0ea15bd0bc60da9a59048299203b