Back to Search Start Over

Self-organizing Flows in Social Networks

Authors :
Laurent Viennot
Laurent Massoulié
Nidhi Hegde
Technicolor R & I [Cesson Sévigné]
Technicolor
Microsoft Research - Inria Joint Centre (MSR - INRIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Microsoft Research Laboratory Cambridge-Microsoft Corporation [Redmond, Wash.]
Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA)
Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Networks, Graphs and Algorithms (GANG)
Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Laboratory of Information, Network and Communication Sciences (LINCS)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom [Paris] (IMT)
Alcatel-Lucent Bell Labs France [Nozay]
Alcatel-Lucent Bell Labs France
Source :
Structural Information AND Communication Complexity-20th International Colloquium, SIROCCO, Structural Information AND Communication Complexity-20th International Colloquium, SIROCCO, Jul 2013, Ischia, Italy. pp.116-128, Structural Information and Communication Complexity ISBN: 9783319035772, SIROCCO, Theoretical Computer Science, Theoretical Computer Science, Elsevier, 2015, pp.16. ⟨10.1016/j.tcs.2015.02.018⟩, Theoretical Computer Science, 2015, pp.16. ⟨10.1016/j.tcs.2015.02.018⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

International audience; Social networks offer users new means of accessing information, essentially relying on ''social filtering'', i.e. propagation and filtering of information by social contacts. The sheer amount of data flowing in these networks, combined with the limited budget of attention of each user, makes it difficult to ensure that social filtering brings relevant content to the interested users. Our motivation in this paper is to measure to what extent self-organization of the social network results in efficient social filtering. To this end we introduce flow games, a simple abstraction that models network formation under selfish user dynamics, featuring user-specific interests and budget of attention. In the context of homogeneous user interests, we show that selfish dynamics converge to a stable network structure (namely a pure Nash equilibrium) with close-to-optimal information dissemination. We show in contrast, for the more realistic case of heterogeneous interests, that convergence, if it occurs, may lead to information dissemination that can be arbitrarily inefficient, as captured by an unbounded ''price of anarchy''. Nevertheless the situation differs when users' interests exhibit a particular structure, captured by a metric space with low doubling dimension. In that case, natural autonomous dynamics converge to a stable configuration. Moreover, users obtain all the information of interest to them in the corresponding dissemination, provided their budget of attention is logarithmic in the size of their interest set., x-id-hal = hal-00761046

Details

Language :
English
ISBN :
978-3-319-03577-2
ISSN :
18792294 and 03043975
ISBNs :
9783319035772
Database :
OpenAIRE
Journal :
Structural Information AND Communication Complexity-20th International Colloquium, SIROCCO, Structural Information AND Communication Complexity-20th International Colloquium, SIROCCO, Jul 2013, Ischia, Italy. pp.116-128, Structural Information and Communication Complexity ISBN: 9783319035772, SIROCCO, Theoretical Computer Science, Theoretical Computer Science, Elsevier, 2015, pp.16. ⟨10.1016/j.tcs.2015.02.018⟩, Theoretical Computer Science, 2015, pp.16. ⟨10.1016/j.tcs.2015.02.018⟩
Accession number :
edsair.doi.dedup.....89019a34d2cdc229e317b5bcc13ff8f2