Back to Search Start Over

Hybrid Iron Oxide–Graphene Oxide–Polysaccharides Microcapsule: A Micro-Matryoshka for On-Demand Drug Release and Antitumor Therapy In Vivo

Authors :
Qiujin Li
Jianfei Zhang
Niveen M. Khashab
Haneen Omar
Safa’a Al-Rehili
Aws Alshamsan
Lin Deng
Abdulaziz Almalik
Source :
ACS Applied Materials & Interfaces. 8:6859-6868
Publication Year :
2016
Publisher :
American Chemical Society (ACS), 2016.

Abstract

Premature drug release is a common drawback in stimuli-responsive drug delivery systems (DDS), especially if it depends on internal triggers, which are hard to control, or a single external stimulus, which can only have one function. Thus, many DDS systems have been reported that combined different triggers; however, limited success has been established in fine-tuning the release process, mainly due to the poor bioavailability and complexity of the reported designs. This paper reports the design of a hybrid microcapsule (h-MC) by a simple layer-by-layer technique comprising polysaccharides (sodium alginate, chitosan, and hyaluronic acid), iron oxide, and graphene oxide (GO). Electrostatic assembly of the oppositely charged polysaccharides and graphene sheets provided a robust structure in which to load drugs through pH control. The polysaccharide component ensured high biocompatibility, bioavailability, and tumor cells targeting. The alternative magnetic field and near-infrared laser triggerable Fe3O4@GO component provided for dual high-energy and high-penetration hyperthermia therapy. On-demand drug release from h-MC can be achieved by synchronizing these external triggers, making the release highly controllable. The synergistic effect of hyperthermia and chemotherapy was successfully confirmed in vitro and in vivo.

Details

ISSN :
19448252 and 19448244
Volume :
8
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi.dedup.....88cd87f403947af38a1d1d01c85e82c1
Full Text :
https://doi.org/10.1021/acsami.6b00322