Back to Search
Start Over
Symplectic time-average propagators for the Schrodinger equation with a time-dependent Hamiltonian
- Source :
- Repositori Universitat Jaume I, Universitat Jaume I, RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, instname
- Publication Year :
- 2017
- Publisher :
- AIP Publishing, 2017.
-
Abstract
- [EN] Several symplectic splitting methods of orders four and six are presented for the step-by-step time numerical integration of the Schrodinger equation when the Hamiltonian is a general explicitly time-dependent real operator. They involve linear combinations of the Hamiltonian evaluated at some intermediate points. We provide the algorithm and the coefficients of the methods, as well as some numerical examples showing their superior performance with respect to other available schemes. Published by AIP Publishing.<br />The authors acknowledge Ministerio de Economia y Competitividad (Spain) for financial support through Project Nos. MTM2013-46553-C3 and MTM2016-77660-P (AEI/FEDER, UE). Additionally, A.M. has been partially supported by the Basque Government (Consolidated Research Group No. IT649-13).
- Subjects :
- polynomials
General Physics and Astronomy
010103 numerical & computational mathematics
exact solutions
01 natural sciences
Quantum
Wave-Packet dynamics
Schrödinger equation
operator equations
symbols.namesake
Quantum mechanics
0103 physical sciences
Covariant Hamiltonian field theory
Superintegrable Hamiltonian system
0101 mathematics
Physical and Theoretical Chemistry
010306 general physics
Moment map
Mathematical physics
Symplectic manifold
Physics
computational complexity
Splitting methods
Runge-Kutta
Numerical integration
symbols
numerical solutions
Convergence
MATEMATICA APLICADA
Hamiltonian (quantum mechanics)
Integrators
Symplectic geometry
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Repositori Universitat Jaume I, Universitat Jaume I, RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, instname
- Accession number :
- edsair.doi.dedup.....884ec197d7045260c5a6bfdf3af53224
- Full Text :
- https://doi.org/10.1063/1.4978410