Back to Search
Start Over
Edge-choosability of planar graphs without adjacent triangles or without 7-cycles
- Source :
- Discrete Mathematics. (1):77-84
- Publisher :
- Elsevier B.V.
-
Abstract
- A graph G is edge-L-colorable, if for a given edge assignment L={L(e):e@?E(G)}, there exists a proper edge-coloring @f of G such that @f(e)@?L(e) for all e@?E(G). If G is edge-L-colorable for every edge assignment L with |L(e)|>=k for e@?E(G), then G is said to be edge-k-choosable. In this paper, we prove that if G is a planar graph with maximum degree @D(G) 5 and without adjacent 3-cycles, or with maximum degree @D(G) 5,6 and without 7-cycles, then G is edge-(@D(G)+1)-choosable.
Details
- Language :
- English
- ISSN :
- 0012365X
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Discrete Mathematics
- Accession number :
- edsair.doi.dedup.....8814170f1ed4e778889da74e894e55da
- Full Text :
- https://doi.org/10.1016/j.disc.2007.12.046