Back to Search Start Over

Investigation of the impact of normalization on the study of interactions between myocardial shape and deformation

Authors :
Maxime Di Folco
Pamela Moceri
Patrick Clarysse
Nicolas Guigui
Nicolas Duchateau
Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS)
Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Modeling & analysis for medical imaging and Diagnosis (MYRIAD)
Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université Côte d'Azur (UCA)
Hôpital Cimiez [Nice] (CHU)
ANR-19-CE45-0005,MIC-MAC,Modélisation de la hiérarchie entre descripteurs cardiaques par apprentissage automatique(2019)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011)
European Project: 786854,H2020 Pilier ERC,ERC AdG(2018)
Source :
FIMH 2021-11th International Conference on Functional Imaging and Modeling of the Heart, FIMH 2021-11th International Conference on Functional Imaging and Modeling of the Heart, Jun 2021, Stanford, United States. In press, Functional Imaging and Modeling of the Heart ISBN: 9783030787097, FIMH, FIMH 2021-11th International Conference on Functional Imaging and Modeling of the Heart, Jun 2021, Stanford, United States. pp.223-231, ⟨10.1007/978-3-030-78710-3_22⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Myocardial shape and deformation are two relevant descriptors for the study of cardiac function and can undergo strong interactions depending on diseases. Manifold learning provides low dimensional representations of these high-dimensional descriptors, but the choice of normalization can strongly affect the analysis. Besides, whether the shape normalization should include a scale factor is still an open question. In this paper, we investigate the influence of normalization choices on the study of the interactions between cardiac shape and deformation using Multiple Manifold Learning, a dimensionality reduction method that considers inter-and intra-descriptors link between samples. By studying the main variations of two different shape normalizations (one including scaling, the other one not) we observed that the scaled normalization concentrates variations of a given physiological characteristic on only one mode. The influence of the associated choice of the deformation normalization was evaluated by quantifying differences between the estimated low-dimensional spaces (one for each choice against a combination of both), revealing potential analysis biases that may arise depending on such choices.

Details

Language :
English
ISBN :
978-3-030-78709-7
ISBNs :
9783030787097
Database :
OpenAIRE
Journal :
FIMH 2021-11th International Conference on Functional Imaging and Modeling of the Heart, FIMH 2021-11th International Conference on Functional Imaging and Modeling of the Heart, Jun 2021, Stanford, United States. In press, Functional Imaging and Modeling of the Heart ISBN: 9783030787097, FIMH, FIMH 2021-11th International Conference on Functional Imaging and Modeling of the Heart, Jun 2021, Stanford, United States. pp.223-231, ⟨10.1007/978-3-030-78710-3_22⟩
Accession number :
edsair.doi.dedup.....87f4ffd30c02c8ff199a98a876d67efc