Back to Search Start Over

Elasto-inertial turbulence

Authors :
Christof Schäfer
Yves Dubief
Devranjan Samanta
Björn Hof
Christian Wagner
Alexander Morozov
Markus Holzner
Source :
Proceedings of the National Academy of Sciences. 110:10557-10562
Publication Year :
2013
Publisher :
Proceedings of the National Academy of Sciences, 2013.

Abstract

Turbulence is ubiquitous in nature yet even for the case of ordinary Newtonian fluids like water our understanding of this phenomenon is limited. Many liquids of practical importance however are more complicated (e.g. blood, polymer melts or paints), they exhibit elastic as well as viscous characteristics and the relation between stress and strain is nonlinear. We here demonstrate for a model system of such complex fluids that at high shear rates turbulence is not simply modified as previously believed but it is suppressed and replaced by a new type of disordered motion, elasto-inertial turbulence (EIT). EIT is found to occur at much lower Reynolds numbers than Newtonian turbulence and the dynamical properties differ significantly. In particular the drag is strongly reduced and the observed friction scaling resolves a longstanding puzzle in non-Newtonian fluid mechanics regarding the nature of the so-called maximum drag reduction asymptote. Theoretical considerations imply that EIT will arise in complex fluids if the extensional viscosity is sufficiently large.

Details

ISSN :
10916490 and 00278424
Volume :
110
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....87e17a1da137c05a67a3d51813d68175
Full Text :
https://doi.org/10.1073/pnas.1219666110