Back to Search
Start Over
Elasto-inertial turbulence
- Source :
- Proceedings of the National Academy of Sciences. 110:10557-10562
- Publication Year :
- 2013
- Publisher :
- Proceedings of the National Academy of Sciences, 2013.
-
Abstract
- Turbulence is ubiquitous in nature yet even for the case of ordinary Newtonian fluids like water our understanding of this phenomenon is limited. Many liquids of practical importance however are more complicated (e.g. blood, polymer melts or paints), they exhibit elastic as well as viscous characteristics and the relation between stress and strain is nonlinear. We here demonstrate for a model system of such complex fluids that at high shear rates turbulence is not simply modified as previously believed but it is suppressed and replaced by a new type of disordered motion, elasto-inertial turbulence (EIT). EIT is found to occur at much lower Reynolds numbers than Newtonian turbulence and the dynamical properties differ significantly. In particular the drag is strongly reduced and the observed friction scaling resolves a longstanding puzzle in non-Newtonian fluid mechanics regarding the nature of the so-called maximum drag reduction asymptote. Theoretical considerations imply that EIT will arise in complex fluids if the extensional viscosity is sufficiently large.
- Subjects :
- Polymers
K-epsilon turbulence model
FOS: Physical sciences
K-omega turbulence model
Viscoelasticity
Physics::Fluid Dynamics
Newtonian fluid
Complex fluid
Physics
Multidisciplinary
Viscosity
Turbulence
Fluid Dynamics (physics.flu-dyn)
Turbulence modeling
Water
Physics - Fluid Dynamics
Mechanics
Models, Theoretical
Elasticity
Non-Newtonian fluid
Condensed Matter::Soft Condensed Matter
Classical mechanics
Nonlinear Dynamics
Physical Sciences
Physics::Space Physics
Hydrodynamics
Rheology
Subjects
Details
- ISSN :
- 10916490 and 00278424
- Volume :
- 110
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences
- Accession number :
- edsair.doi.dedup.....87e17a1da137c05a67a3d51813d68175
- Full Text :
- https://doi.org/10.1073/pnas.1219666110