Back to Search Start Over

A deep learning-based method for drug-target interaction prediction based on long short-term memory neural network

Authors :
Hai-Cheng Yi
Yan-Bin Wang
Kai Zheng
Shan Yang
Zhan-Heng Chen
Zhu-Hong You
Source :
BMC Medical Informatics and Decision Making, Vol 20, Iss S2, Pp 1-9 (2020), BMC Medical Informatics and Decision Making
Publication Year :
2020
Publisher :
BMC, 2020.

Abstract

BackgroundThe key to modern drug discovery is to find, identify and prepare drug molecular targets. However, due to the influence of throughput, precision and cost, traditional experimental methods are difficult to be widely used to infer these potential Drug-Target Interactions (DTIs). Therefore, it is urgent to develop effective computational methods to validate the interaction between drugs and target.MethodsWe developed a deep learning-based model for DTIs prediction. The proteins evolutionary features are extracted via Position Specific Scoring Matrix (PSSM) and Legendre Moment (LM) and associated with drugs molecular substructure fingerprints to form feature vectors of drug-target pairs. Then we utilized the Sparse Principal Component Analysis (SPCA) to compress the features of drugs and proteins into a uniform vector space. Lastly, the deep long short-term memory (DeepLSTM) was constructed for carrying out prediction.ResultsA significant improvement in DTIs prediction performance can be observed on experimental results, with AUC of 0.9951, 0.9705, 0.9951, 0.9206, respectively, on four classes important drug-target datasets. Further experiments preliminary proves that the proposed characterization scheme has great advantage on feature expression and recognition. We also have shown that the proposed method can work well with small dataset.ConclusionThe results demonstration that the proposed approach has a great advantage over state-of-the-art drug-target predictor. To the best of our knowledge, this study first tests the potential of deep learning method with memory and Turing completeness in DTIs prediction.

Details

Language :
English
ISSN :
14726947
Volume :
20
Database :
OpenAIRE
Journal :
BMC Medical Informatics and Decision Making
Accession number :
edsair.doi.dedup.....87c8998c85bf6d33a5b31807648f25f5