Back to Search
Start Over
On the Parameterized Complexity of Computing Balanced Partitions in Graphs
- Publication Year :
- 2013
- Publisher :
- arXiv, 2013.
-
Abstract
- A balanced partition is a clustering of a graph into a given number of equal-sized parts. For instance, the Bisection problem asks to remove at most k edges in order to partition the vertices into two equal-sized parts. We prove that Bisection is FPT for the distance to constant cliquewidth if we are given the deletion set. This implies FPT algorithms for some well-studied parameters such as cluster vertex deletion number and feedback vertex set. However, we show that Bisection does not admit polynomial-size kernels for these parameters. For the Vertex Bisection problem, vertices need to be removed in order to obtain two equal-sized parts. We show that this problem is FPT for the number of removed vertices k if the solution cuts the graph into a constant number c of connected components. The latter condition is unavoidable, since we also prove that Vertex Bisection is W[1]-hard w.r.t. (k,c). Our algorithms for finding bisections can easily be adapted to finding partitions into d equal-sized parts, which entails additional running time factors of n^{O(d)}. We show that a substantial speed-up is unlikely since the corresponding task is W[1]-hard w.r.t. d, even on forests of maximum degree two. We can, however, show that it is FPT for the vertex cover number.<br />Comment: This version of the article is to appear in Theory of Computing Systems
- Subjects :
- FOS: Computer and information sciences
Discrete Mathematics (cs.DM)
Vertex cover
Parameterized complexity
G.2.1
G.2.2
Theoretical Computer Science
Combinatorics
Computer Science::Discrete Mathematics
Computer Science - Data Structures and Algorithms
FOS: Mathematics
Mathematics - Combinatorics
Partition (number theory)
Data Structures and Algorithms (cs.DS)
05C85
Cluster analysis
Mathematics
Connected component
I.1.2
F.2.2
Graph
Vertex (geometry)
Computational Theory and Mathematics
Feedback vertex set
Combinatorics (math.CO)
Computer Science - Discrete Mathematics
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....87b2158b82e7d0ff44946e5c30bd7461
- Full Text :
- https://doi.org/10.48550/arxiv.1312.7014