Back to Search Start Over

Doubly-robust evaluation of high-dimensional surrogate markers

Authors :
Denis, Agniel
Boris P, Hejblum
Rodolphe, Thiébaut
Layla, Parast
Harvard Medical School [Boston] (HMS)
Rand Corporation
Statistics In System biology and Translational Medicine (SISTM)
Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)- Bordeaux population health (BPH)
Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Bordeaux population health (BPH)
Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Vaccine Research Institute (VRI)
Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)
CHU de Bordeaux Pellegrin [Bordeaux]
SWAGR
INRIA-SILICONVALLEY
DESTRIER
Hejblum, Boris
Source :
Biostatistics, Biostatistics, In press, ⟨10.1093/biostatistics/kxac020⟩, Biostatistics, Oxford University Press (OUP), In press, ⟨10.1093/biostatistics/kxac020⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

Summary When evaluating the effectiveness of a treatment, policy, or intervention, the desired measure of efficacy may be expensive to collect, not routinely available, or may take a long time to occur. In these cases, it is sometimes possible to identify a surrogate outcome that can more easily, quickly, or cheaply capture the effect of interest. Theory and methods for evaluating the strength of surrogate markers have been well studied in the context of a single surrogate marker measured in the course of a randomized clinical study. However, methods are lacking for quantifying the utility of surrogate markers when the dimension of the surrogate grows. We propose a robust and efficient method for evaluating a set of surrogate markers that may be high-dimensional. Our method does not require treatment to be randomized and may be used in observational studies. Our approach draws on a connection between quantifying the utility of a surrogate marker and the most fundamental tools of causal inference—namely, methods for robust estimation of the average treatment effect. This connection facilitates the use of modern methods for estimating treatment effects, using machine learning to estimate nuisance functions and relaxing the dependence on model specification. We demonstrate that our proposed approach performs well, demonstrate connections between our approach and certain mediation effects, and illustrate it by evaluating whether gene expression can be used as a surrogate for immune activation in an Ebola study.

Details

Language :
English
ISSN :
14654644 and 14684357
Database :
OpenAIRE
Journal :
Biostatistics, Biostatistics, In press, ⟨10.1093/biostatistics/kxac020⟩, Biostatistics, Oxford University Press (OUP), In press, ⟨10.1093/biostatistics/kxac020⟩
Accession number :
edsair.doi.dedup.....879ceb207400dca6feedf03cf2a5ec33
Full Text :
https://doi.org/10.1093/biostatistics/kxac020⟩