Back to Search Start Over

Altered lipid profile and changes in uroplakin properties of rat urothelial plasma membrane with diets of different lipid composition

Authors :
Reyna O. Calderon
Guillermina A. Bongiovanni
Aldo R. Eynard
Source :
Molecular and cellular biochemistry. 271(1-2)
Publication Year :
2005

Abstract

Rigid plaques containing protein particles in plasma membrane build on the apical surface of the mammalian urothelium. We have previously shown that dietary fats modified the fatty acid profile as well as the fluorescence anisotropy of rat urothelial plasma membranes. In this study, we have further examined the proportion of phosphatidylcholine, phosphatidylethanolamine, cerebrosides, sulfatides and cholesterol in detergent resistant (DRM) and soluble (DSM) plasma membrane fractions as well as the properties of the particles. Four groups of weaned rats were fed for 12 weeks on a commercial diet (control), or on a formula containing 5% (w/w) of corn oil, fish oil or olein. The control DRM behaved as a distinctive domain since it was enriched in cholesterol and glycosphingolipids. DSM showed higher levels of phosphatidylcholine and phosphatidylethanolamine with respect to DRM. On the other hand, the lipid distributions were affected by the diets. Homogeneous lipid distributions between DSM and DRM were found in olein membranes, suggesting a decreased potential formation of lipid domains. In addition, properties of the uroplakins were altered by dietary treatments. Thus, uroplakins (UP) Ia, Ib, II and III observed by SDS-PAGE, were in lower proportions (mainly olein) than in controls. Moreover, a higher proportion of UPIII was cross-linked to UPIII and UPIb in olein treatment than in control. Meanwhile, only cross-linking to UPIII or UPIb was altered in corn and fish diets, respectively. These results suggest a role of the lipids in the establishment of the uroplakin interactions. Thus, specific dietary fats may have important functional implications. (Mol Cell Biochem 271: 69–75, 2005)

Details

ISSN :
03008177
Volume :
271
Issue :
1-2
Database :
OpenAIRE
Journal :
Molecular and cellular biochemistry
Accession number :
edsair.doi.dedup.....8787cb4d031302f9b7cb0bb4eb6b2694