Cite
Engineering angiogenesis following spinal cord injury: A coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood-spinal cord barrier
MLA
Rebecca Robinson, et al. Engineering Angiogenesis Following Spinal Cord Injury: A Coculture of Neural Progenitor and Endothelial Cells in a Degradable Polymer Implant Leads to an Increase in Vessel Density and Formation of the Blood-Spinal Cord Barrier. Jan. 2009. EBSCOhost, widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsair&AN=edsair.doi.dedup.....8781c99b42c5ae623cb68b51b8c0d643&authtype=sso&custid=ns315887.
APA
Rebecca Robinson, Sara Royce Hynes, Millicent Ford Rauch, James P. Bertram, Joseph A. Madri, Andrew Redmond, Erin B. Lavik, Hao Xu, & Cicely A. Williams. (2009). Engineering angiogenesis following spinal cord injury: A coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood-spinal cord barrier.
Chicago
Rebecca Robinson, Sara Royce Hynes, Millicent Ford Rauch, James P. Bertram, Joseph A. Madri, Andrew Redmond, Erin B. Lavik, Hao Xu, and Cicely A. Williams. 2009. “Engineering Angiogenesis Following Spinal Cord Injury: A Coculture of Neural Progenitor and Endothelial Cells in a Degradable Polymer Implant Leads to an Increase in Vessel Density and Formation of the Blood-Spinal Cord Barrier,” January. http://widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsair&AN=edsair.doi.dedup.....8781c99b42c5ae623cb68b51b8c0d643&authtype=sso&custid=ns315887.