Back to Search Start Over

Approximability and Exact Resolution of the Multidimensional Binary Vector Assignment Problem

Authors :
Rodolphe Giroudeau
Marin Bougeret
Guillerme Duvillié
Algorithmes, Graphes et Combinatoire (ALGCO)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Méthodes Algorithmes pour l'Ordonnancement et les Réseaux (MAORE)
Lirmm
Montpellier II
Source :
Combinatorial Optimization: 4th International Symposium, ISCO 2016, Vietri sul Mare, Italy, May 16-18, 2016, Revised Selected Papers4th International Symposium, ISCO 2016, Vietri sul Mare, Italy, May 16-18, 2016, Revised Selected Papers. Springer, HAL, [Research Report] Lirmm; Montpellier II. 2016, BASE-Bielefeld Academic Search Engine, 4th International Symposium on Combinatorial Optimization, ISCO: International Symposium on Combinatorial Optimization, ISCO: International Symposium on Combinatorial Optimization, May 2016, Vietri sul Mare, Italy. pp.148-159, ⟨10.1007/978-3-319-45587-7_13⟩, Journal of Combinatorial Optimization, Journal of Combinatorial Optimization, Springer Verlag, 2018, 36 (3), pp.1059-1073. ⟨10.1007/s10878-018-0276-8⟩, Lecture Notes in Computer Science ISBN: 9783319455860, ISCO, Journal of combinatorial optimization, 36 (3
Publication Year :
2016

Abstract

In this paper we consider the multidimensional binary vector assignment problem. An input of this problem is defined by m disjoint multisets $$V^1, V^2, \ldots , V^m$$ , each composed of n binary vectors of size p. An output is a set of n disjoint m-tuples of vectors, where each m-tuple is obtained by picking one vector from each multiset $$V^i$$ . To each m-tuple we associate a p dimensional vector by applying the bit-wise AND operation on the m vectors of the tuple. The objective is to minimize the total number of zeros in these n vectors. We denote this problem by , and the restriction of this problem where every vector has at most c zeros by . was only known to be -hard, even for . We show that, assuming the unique games conjecture, it is -hard to -approximate for any fixed and . This result is tight as any solution is a -approximation. We also prove without assuming UGC that is -hard even for . Finally, we show that is polynomial-time solvable for fixed (which cannot be extended to ).

Details

Language :
French
ISBN :
978-3-319-45586-0
ISSN :
13826905 and 15732886
ISBNs :
9783319455860
Database :
OpenAIRE
Journal :
Combinatorial Optimization: 4th International Symposium, ISCO 2016, Vietri sul Mare, Italy, May 16-18, 2016, Revised Selected Papers4th International Symposium, ISCO 2016, Vietri sul Mare, Italy, May 16-18, 2016, Revised Selected Papers. Springer, HAL, [Research Report] Lirmm; Montpellier II. 2016, BASE-Bielefeld Academic Search Engine, 4th International Symposium on Combinatorial Optimization, ISCO: International Symposium on Combinatorial Optimization, ISCO: International Symposium on Combinatorial Optimization, May 2016, Vietri sul Mare, Italy. pp.148-159, ⟨10.1007/978-3-319-45587-7_13⟩, Journal of Combinatorial Optimization, Journal of Combinatorial Optimization, Springer Verlag, 2018, 36 (3), pp.1059-1073. ⟨10.1007/s10878-018-0276-8⟩, Lecture Notes in Computer Science ISBN: 9783319455860, ISCO, Journal of combinatorial optimization, 36 (3
Accession number :
edsair.doi.dedup.....875d01db00f362e21357a596949a5a27