Back to Search Start Over

A similarity renormalization group approach to Green's function methods

Authors :
Marie, Antoine
Loos, Pierre-François
Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ)
Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
European Project: 863481,PTEROSOR
Publication Year :
2023
Publisher :
arXiv, 2023.

Abstract

The family of Green's function methods based on the $GW$ approximation has gained popularity in the electronic structure theory thanks to its accuracy in weakly correlated systems combined with its cost-effectiveness. Despite this, self-consistent versions still pose challenges in terms of convergence. A recent study \href{https://doi.org/10.1063/5.0089317}{[J. Chem. Phys. 156, 231101 (2022)]} has linked these convergence issues to the intruder-state problem. In this work, a perturbative analysis of the similarity renormalization group (SRG) approach is performed on Green's function methods. The SRG formalism enables us to derive, from first principles, the expression of a naturally static and Hermitian form of the self-energy that can be employed in quasiparticle self-consistent $GW$ (qs$GW$) calculations. The resulting SRG-based regularized self-energy significantly accelerates the convergence of qs$GW$ calculations, slightly improves the overall accuracy, and is straightforward to implement in existing code.<br />Comment: 14 pages, 7 figures (supporting information available)

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....875842e0485c3b9b8195d3155599565c
Full Text :
https://doi.org/10.48550/arxiv.2303.05984