Back to Search
Start Over
Potent competitive inhibition of human ribonucleotide reductase by a nonnucleoside small molecule
- Source :
- Proc Natl Acad Sci U S A
- Publication Year :
- 2017
-
Abstract
- Human ribonucleotide reductase (hRR) is crucial for DNA replication and maintenance of a balanced dNTP pool, and is an established cancer target. Nucleoside analogs such as gemcitabine diphosphate and clofarabine nucleotides target the large subunit (hRRM1) of hRR. These drugs have a poor therapeutic index due to toxicity caused by additional effects, including DNA chain termination. The discovery of nonnucleoside, reversible, small-molecule inhibitors with greater specificity against hRRM1 is a key step in the development of more effective treatments for cancer. Here, we report the identification and characterization of a unique nonnucleoside small-molecule hRR inhibitor, naphthyl salicylic acyl hydrazone (NSAH), using virtual screening, binding affinity, inhibition, and cell toxicity assays. NSAH binds to hRRM1 with an apparent dissociation constant of 37 µM, and steady-state kinetics reveal a competitive mode of inhibition. A 2.66-A resolution crystal structure of NSAH in complex with hRRM1 demonstrates that NSAH functions by binding at the catalytic site (C-site) where it makes both common and unique contacts with the enzyme compared with NDP substrates. Importantly, the IC50 for NSAH is within twofold of gemcitabine for growth inhibition of multiple cancer cell lines, while demonstrating little cytotoxicity against normal mobilized peripheral blood progenitor cells. NSAH depresses dGTP and dATP levels in the dNTP pool causing S-phase arrest, providing evidence for RR inhibition in cells. This report of a nonnucleoside reversible inhibitor binding at the catalytic site of hRRM1 provides a starting point for the design of a unique class of hRR inhibitors.
- Subjects :
- 0301 basic medicine
Ribonucleoside Diphosphate Reductase
Biology
Naphthalenes
Crystallography, X-Ray
Corrections
03 medical and health sciences
chemistry.chemical_compound
Non-competitive inhibition
Deoxyadenine Nucleotides
Catalytic Domain
Ribonucleotide Reductases
Humans
IC50
chemistry.chemical_classification
Multidisciplinary
Tumor Suppressor Proteins
Cell Cycle
DNA replication
Hydrazones
Small molecule
Salicylates
030104 developmental biology
Ribonucleotide reductase
Enzyme
chemistry
Biochemistry
Growth inhibition
Drug Screening Assays, Antitumor
DNA
Subjects
Details
- ISSN :
- 10916490
- Volume :
- 114
- Issue :
- 31
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Accession number :
- edsair.doi.dedup.....8728aec1d2236f266a043a79dd31b7e0