Back to Search Start Over

Continuous capillary-flow sensing of glucose and lactate in sweat with an electrochemical sensor based on functionalized graphene oxide

Authors :
Chiara Zanardi
Barbara Zanfrognini
Manuela Melucci
Vanesa Quintano
Emanuele Treossi
Laura Favaretto
Vincenzo Palermo
Jinhua Sun
Fabrizio Poletti
Source :
Sensors and actuators. B, Chemical, 344 (2021). doi:10.1016/j.snb.2021.130253, info:cnr-pdr/source/autori:Poletti, Fabrizio; Zanfrognini, Barbara; Favaretto, Laura; Quintano, Vanesa; Sun, Jinhua; Treossi, Emanuele; Melucci, Manuela; Palermo, Vincenzo; Zanardi, Chiara/titolo:Continuous capillary-flow sensing of glucose and lactate in sweat with an electrochemical sensor based on functionalized graphene oxide/doi:10.1016%2Fj.snb.2021.130253/rivista:Sensors and actuators. B, Chemical (Print)/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume:344, Sensors and Actuators B: Chemical
Publication Year :
2021

Abstract

We describe an electrochemical device for the simultaneous monitoring of glucose and lactate in sweat, based on enzymatic sensors exploiting capillary flow to induce continuous, stable sensing. The enzymes, namely glucose oxidase and lactate oxidase, were anchored to a graphene oxide and chitosan composite (GO-Ch) of original synthesis, to achieve stable deposition of the bioreceptors on the electrochemical platform. We tested both biosensors on a realistic device architecture: they were embedded in a nitrocellulose strip, to exploit capillary force to induce a continuous flux of sweat on the sensor platform, ensuring the constant renewal of sample. We could achieve good sensitivity at potentials close to zero by using Prussian Blue as redox mediator, thus avoiding interference from other chemical species present in the complex matrix. The sensing signal was stable and linear over two hours in a concentration range of glucose and lactate between the limit of quantification (32 and 68 nM, respectively) and the upper limit of linearity (3.8 and 50.0 mM, respectively). The device is simple, robust, stable, and can be easily worn without the direct contact of the active part with the skin, making it suitable for simultaneous monitoring of glucose and lactate in human sweat.

Details

Language :
English
Database :
OpenAIRE
Journal :
Sensors and actuators. B, Chemical, 344 (2021). doi:10.1016/j.snb.2021.130253, info:cnr-pdr/source/autori:Poletti, Fabrizio; Zanfrognini, Barbara; Favaretto, Laura; Quintano, Vanesa; Sun, Jinhua; Treossi, Emanuele; Melucci, Manuela; Palermo, Vincenzo; Zanardi, Chiara/titolo:Continuous capillary-flow sensing of glucose and lactate in sweat with an electrochemical sensor based on functionalized graphene oxide/doi:10.1016%2Fj.snb.2021.130253/rivista:Sensors and actuators. B, Chemical (Print)/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume:344, Sensors and Actuators B: Chemical
Accession number :
edsair.doi.dedup.....87248ccd07d90e5a80795168627d9c6d
Full Text :
https://doi.org/10.1016/j.snb.2021.130253