Back to Search Start Over

Sequence Mapping by Electronic PCR

Authors :
Gregory D. Schuler
Source :
Genome Research. 7:541-550
Publication Year :
1997
Publisher :
Cold Spring Harbor Laboratory, 1997.

Abstract

The highly specific and sensitive PCR provides the basis for sequence-tagged sites (STSs), unique landmarks that have been used widely in the construction of genetic and physical maps of the human genome. Electronic PCR (e-PCR) refers to the process of recovering these unique sites in DNA sequences by searching for subsequences that closely match the PCR primers and have the correct order, orientation, and spacing that they could plausibly prime the amplification of a PCR product of the correct molecular weight. A software tool was developed to provide an efficient implementation of this search strategy and allow the sort of en masse searching that is required for modern genome analysis. Some sample searches were performed to demonstrate a number of factors that can affect the likelihood of obtaining a match. Analysis of one large sequence database record revealed the presence of several microsatellite and gene-based markers and allowed the exact base-pair distances among them to be calculated. This example provides a demonstration of how e-PCR can be used to integrate the growing body of genomic sequence data with existing maps, reveal relationships among markers that existed previously on different maps, and correlate genetic distances with physical distances.

Details

ISSN :
15495469 and 10889051
Volume :
7
Database :
OpenAIRE
Journal :
Genome Research
Accession number :
edsair.doi.dedup.....870db049845057af5b1d74ae0dfd73d3
Full Text :
https://doi.org/10.1101/gr.7.5.541