Back to Search Start Over

Dominance inequalities for scheduling around an unrestrictive common due date

Authors :
Anne-Elisabeth Falq
Safia Kedad-Sidhoum
Pierre Fouilhoux
Recherche Opérationnelle (RO)
LIP6
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
CEDRIC. Optimisation Combinatoire (CEDRIC - OC)
Centre d'études et de recherche en informatique et communications (CEDRIC)
Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)
Publication Year :
2021

Abstract

The problem considered in this work consists in scheduling a set of tasks on a single machine, around an unrestrictive common due date to minimize the weighted sum of earliness and tardiness. This problem can be formulated as a compact mixed integer program (MIP). In this article, we focus on neighborhood-based dominance properties, where the neighborhood is associated to insert and swap operations. We derive from these properties a local search procedure providing a very good heuristic solution. The main contribution of this work stands in an exact solving context: we derive constraints eliminating the non locally optimal solutions with respect to the insert and swap operations. We propose linear inequalities translating these constraints to strengthen the MIP compact formulation. These inequalities, called dominance inequalities, are different from standard reinforcement inequalities. We provide a numerical analysis which shows that adding these inequalities significantly reduces the computation time required for solving the scheduling problem using a standard solver.<br />30 pages, 7 figures and 4 tables

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....870503be0db332cbdfedcbed1638b67f