Back to Search
Start Over
Exponential factorizations of holomorphic maps
- Publication Year :
- 2019
- Publisher :
- arXiv, 2019.
-
Abstract
- We show that any element of the special linear group $SL_2(R)$ is a product of two exponentials if the ring $R$ is either the ring of holomorphic functions on an open Riemann surface or the disc algebra. This is sharp: one exponential factor is not enough since the exponential map corresponding to $SL_2(\mathbb{C})$ is not surjective. Our result extends to the linear group $GL_2(R)$.<br />Comment: 9 pages
- Subjects :
- Pure mathematics
Ring (mathematics)
Group (mathematics)
Mathematics - Complex Variables
General Mathematics
Riemann surface
010102 general mathematics
Special linear group
Holomorphic function
01 natural sciences
Exponential map (Lie theory)
Exponential function
Surjective function
symbols.namesake
510 Mathematics
Mathematics::Quantum Algebra
symbols
FOS: Mathematics
15A54, 15A16, 30H50, 32A38, 32E10, 48E25
0101 mathematics
Complex Variables (math.CV)
Mathematics::Representation Theory
Mathematics
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....86e23d6077d49c4bb43d7c2e8c18a715
- Full Text :
- https://doi.org/10.48550/arxiv.1905.01650