Back to Search
Start Over
Functional skeletal muscle regeneration from differentiating embryonic stem cells
- Source :
- Nature medicine. 14(2)
- Publication Year :
- 2007
-
Abstract
- Little progress has been made toward the use of embryonic stem (ES) cells to study and isolate skeletal muscle progenitors. This is due to the paucity of paraxial mesoderm formation during embryoid body (EB) in vitro differentiation and to the lack of reliable identification and isolation criteria for skeletal muscle precursors. Here we show that expression of the transcription factor Pax3 during embryoid body differentiation enhances both paraxial mesoderm formation and the myogenic potential of the cells within this population. Transplantation of Pax3-induced cells results in teratomas, however, indicating the presence of residual undifferentiated cells. By sorting for the PDGF-alpha receptor, a marker of paraxial mesoderm, and for the absence of Flk-1, a marker of lateral plate mesoderm, we derive a cell population from differentiating ES cell cultures that has substantial muscle regeneration potential. Intramuscular and systemic transplantation of these cells into dystrophic mice results in extensive engraftment of adult myofibers with enhanced contractile function without the formation of teratomas. These data demonstrate the therapeutic potential of ES cells in muscular dystrophy.
- Subjects :
- Pathology
medicine.medical_specialty
Receptor, Platelet-Derived Growth Factor alpha
Cell Transplantation
PAX3
Embryoid body
Biology
Muscle Development
Cardiotoxins
General Biochemistry, Genetics and Molecular Biology
Dystrophin
Mesoderm
Mice
Paraxial mesoderm
medicine
Animals
Paired Box Transcription Factors
Regeneration
Muscle, Skeletal
PAX3 Transcription Factor
Embryonic Stem Cells
Stem cell transplantation for articular cartilage repair
Lateral plate mesoderm
Teratoma
Cell Differentiation
General Medicine
Muscular Dystrophy, Animal
Paraxial mesoderm formation
Vascular Endothelial Growth Factor Receptor-2
Cell biology
DNA-Binding Proteins
P19 cell
embryonic structures
Mice, Inbred mdx
Stem cell
Muscle Contraction
Subjects
Details
- ISSN :
- 1546170X
- Volume :
- 14
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Nature medicine
- Accession number :
- edsair.doi.dedup.....86c98163e8ebb6b010cc75e6debbab86