Back to Search Start Over

New Methods Section in PLOS Computational Biology

Authors :
Brian Y. Chen
Source :
PLoS Computational Biology, Vol 10, Iss 8, p e1003792 (2014), PLoS Computational Biology
Publication Year :
2014
Publisher :
Public Library of Science (PLoS), 2014.

Abstract

Algorithms for comparing protein structure are frequently used for function annotation. By searching for subtle similarities among very different proteins, these algorithms can identify remote homologs with similar biological functions. In contrast, few comparison algorithms focus on specificity annotation, where the identification of subtle differences among very similar proteins can assist in finding small structural variations that create differences in binding specificity. Few specificity annotation methods consider electrostatic fields, which play a critical role in molecular recognition. To fill this gap, this paper describes VASP-E (Volumetric Analysis of Surface Properties with Electrostatics), a novel volumetric comparison tool based on the electrostatic comparison of protein-ligand and protein-protein binding sites. VASP-E exploits the central observation that three dimensional solids can be used to fully represent and compare both electrostatic isopotentials and molecular surfaces. With this integrated representation, VASP-E is able to dissect the electrostatic environments of protein-ligand and protein-protein binding interfaces, identifying individual amino acids that have an electrostatic influence on binding specificity. VASP-E was used to examine a nonredundant subset of the serine and cysteine proteases as well as the barnase-barstar and Rap1a-raf complexes. Based on amino acids established by various experimental studies to have an electrostatic influence on binding specificity, VASP-E identified electrostatically influential amino acids with 100% precision and 83.3% recall. We also show that VASP-E can accurately classify closely related ligand binding cavities into groups with different binding preferences. These results suggest that VASP-E should prove a useful tool for the characterization of specific binding and the engineering of binding preferences in proteins.<br />Author Summary Proteins, the ubiquitous worker molecules of the cell, are a diverse class of molecules that perform very specific tasks. Understanding how proteins achieve specificity is a critical step towards understanding biological systems and a key prerequisite for rationally engineering new proteins. To examine electrostatic influences on specificity in proteins, this paper presents VASP-E, a software tool that generates solid representations of the electrostatic potential fields that surround proteins. VASP-E compares solids with constructive solid geometry, a class of techniques developed first for modeling complex machine parts. We observed that solid representations could quantify the degree of charge complementarity in protein-protein interactions and identify key residues that strengthen or weaken them. VASP-E correctly identified amino acids with established experimental influences on protein-protein binding specificity. We also observed that solid representations of electrostatic fields could identify electrostatic conservations and variations that relate to similarities and differences in binding specificity between proteins and small molecules.

Details

Language :
English
ISSN :
15537358
Volume :
10
Issue :
8
Database :
OpenAIRE
Journal :
PLoS Computational Biology
Accession number :
edsair.doi.dedup.....86c2f2e02bac0d170b137edfa9779306