Back to Search
Start Over
Ontogenetic Characterization of the Intestinal Microbiota of Channel Catfish through 16S rRNA Gene Sequencing Reveals Insights on Temporal Shifts and the Influence of Environmental Microbes
- Source :
- PLoS ONE, Vol 11, Iss 11, p e0166379 (2016), PLoS ONE
- Publication Year :
- 2016
- Publisher :
- Public Library of Science (PLoS), 2016.
-
Abstract
- Aquaculture recently overtook capture fisheries as the largest producer of food fish, but to continue increasing fish production the industry is in search of better methods of improving fish health and growth. Pre- and probiotic supplementation has gained attention as a means of solving these issues, however, for such approaches to be successful, we must first gain a more holistic understanding of the factors influencing the microbial communities present in the intestines of fish. In this study, we characterize the bacterial communities associated with the digestive tract of a highly valuable U.S. aquaculture species, channel catfish Ictalurus punctatus, over the first 193 days of life to evaluate temporal changes that may occur throughout ontogenetic development of the host. Intestinal microbiota were surveyed with high-throughput DNA sequencing of 16S rRNA V4 gene amplicons derived from fish at 3, 65, 125, and 193 days post hatch (dph), while also characterizing the environmental microbes derived from the water supply and the administered diets. Microbial communities inhabiting the intestines of catfish early in life were dynamic, with significant shifts occurring up to 125 dph when the microbiota somewhat stabilized, as shifts were less apparent between 125 to 193 dph. Bacterial phyla present in the gut of catfish throughout ontogeny include Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria; with the species Cetobacterium somerae and Plesiomonas shigelloides showing the highest abundance in the catfish microbiota after 3 dph. Comparisons of the gut microbiota to the environmental microbes reveals that the fish gut is maintained as a niche habitat, separate from the overall microbial communities present in diets and water-supply. Although, there is also evidence that the environmental microbiota serves as an inoculum to the fish gut. Our results have implications for future research related to channel catfish biology and culture, and increase our understanding of ontogenetic effects on the microbiota of teleost fish.
- Subjects :
- 0301 basic medicine
lcsh:Medicine
Gut flora
Aquaculture
RNA, Ribosomal, 16S
Environmental Microbiology
Medicine and Health Sciences
lcsh:Science
Phylogeny
Ictaluridae
Multidisciplinary
biology
Ecology
Fishes
Genomics
Freshwater Fish
Medical Microbiology
Osteichthyes
Ictalurus
Vertebrates
Freshwater fish
Anatomy
Research Article
Catfish
Fish Biology
Fish farming
030106 microbiology
Firmicutes
Microbial Genomics
Microbiology
Fusobacteria
03 medical and health sciences
Fish physiology
Proteobacteria
Genetics
Fish Physiology
Animals
Animal Physiology
Ecosystem
Nutrition
Bacteria
Bacteroidetes
business.industry
Gut Bacteria
lcsh:R
Organisms
Biology and Life Sciences
biology.organism_classification
Vertebrate Physiology
Gastrointestinal Microbiome
Diet
Gastrointestinal Tract
030104 developmental biology
lcsh:Q
Microbiome
business
Digestive System
Zoology
Subjects
Details
- ISSN :
- 19326203
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- PLOS ONE
- Accession number :
- edsair.doi.dedup.....86b0347111270e25cb4e7f16d14a30a7
- Full Text :
- https://doi.org/10.1371/journal.pone.0166379