Back to Search Start Over

Almost Tight Lower Bounds for Hard Cutting Problems in Embedded Graphs

Authors :
Dániel Marx
Vincent Cohen-Addad
Éric Colin de Verdière
Arnaud de Mesmay
Google Research [Zurich]
Laboratoire d'Informatique Gaspard-Monge (LIGM)
École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel
Centre National de la Recherche Scientifique (CNRS)
Helmholtz Center for Information Security [Saarbrücken] (CISPA)
Recherche Opérationnelle (RO)
LIP6
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM)
Institute for Computer Science and Control [Budapest] (SZTAKI)
Hungarian Academy of Sciences (MTA)
GIPSA - Architecture, Géométrie, Perception, Images, Gestes (GIPSA-AGPIG)
Département Images et Signal (GIPSA-DIS)
Grenoble Images Parole Signal Automatique (GIPSA-lab )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
de Mesmay, Arnaud
Wagner, Michael
Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-ESIEE Paris-Fédération de Recherche Bézout-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of the ACM (JACM), Journal of the ACM (JACM), Association for Computing Machinery, 2021, 68 (4), pp.1-26. ⟨10.1145/3450704⟩, SoCG 2019-35th International Symposium on Computational Geometry, SoCG 2019-35th International Symposium on Computational Geometry, Jun 2019, Portland, OR, United States, 35th International Symposium on Computational Geometry (SoCG 2019), Journal of the ACM
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

We prove essentially tight lower bounds, conditionally to the Exponential Time Hypothesis, for two fundamental but seemingly very different cutting problems on surface-embedded graphs: the Shortest Cut Graph problem and the Multiway Cut problem. A cut graph of a graph G embedded on a surface S is a subgraph of G whose removal from S leaves a disk. We consider the problem of deciding whether an unweighted graph embedded on a surface of genus G has a cut graph of length at most a given value. We prove a time lower bound for this problem of n Ω( g log g ) conditionally to the ETH. In other words, the first n O(g) -time algorithm by Erickson and Har-Peled [SoCG 2002, Discr. Comput. Geom. 2004] is essentially optimal. We also prove that the problem is W[1]-hard when parameterized by the genus, answering a 17-year-old question of these authors. A multiway cut of an undirected graph G with t distinguished vertices, called terminals , is a set of edges whose removal disconnects all pairs of terminals. We consider the problem of deciding whether an unweighted graph G has a multiway cut of weight at most a given value. We prove a time lower bound for this problem of n Ω( gt + g 2 + t log ( g + t )) , conditionally to the ETH, for any choice of the genus g ≥ 0 of the graph and the number of terminals t ≥ 4. In other words, the algorithm by the second author [Algorithmica 2017] (for the more general multicut problem) is essentially optimal; this extends the lower bound by the third author [ICALP 2012] (for the planar case). Reductions to planar problems usually involve a gridlike structure. The main novel idea for our results is to understand what structures instead of grids are needed if we want to exploit optimally a certain value G of the genus.

Details

Language :
English
ISSN :
00045411 and 1557735X
Database :
OpenAIRE
Journal :
Journal of the ACM (JACM), Journal of the ACM (JACM), Association for Computing Machinery, 2021, 68 (4), pp.1-26. ⟨10.1145/3450704⟩, SoCG 2019-35th International Symposium on Computational Geometry, SoCG 2019-35th International Symposium on Computational Geometry, Jun 2019, Portland, OR, United States, 35th International Symposium on Computational Geometry (SoCG 2019), Journal of the ACM
Accession number :
edsair.doi.dedup.....866bd341eb3b8fc895297390742f4384
Full Text :
https://doi.org/10.1145/3450704⟩