Back to Search Start Over

Regulation of Nodal signaling propagation by receptor interactions and positive feedback

Authors :
David Mörsdorf
Anna C Kögler
Hannes Preiß
Daniel Čapek
Gary H Soh
Katherine W Rogers
Hernán Morales-Navarrete
María Almuedo-Castillo
Patrick Müller
European Commission
Max Planck Society
International Max Planck Research Schools
Publication Year :
2022
Publisher :
eLife Sciences Publications, 2022.

Abstract

During vertebrate embryogenesis, the germ layers are patterned by secreted Nodal signals. In the classical model, Nodals elicit signaling by binding to a complex comprising Type I/II Activin receptors (Acvr) and the co-receptor Tdgf1. However, it is currently unclear whether receptor binding can also affect the distribution of Nodals themselves through the embryo, and it is unknown which of the putative Acvr paralogs mediate Nodal signaling in zebrafish. Here, we characterize three Type I (Acvr1) and four Type II (Acvr2) homologs and show that – except for Acvr1c – all receptor-encoding transcripts are maternally deposited and present during zebrafish embryogenesis. We generated mutants and used them together with combinatorial morpholino knockdown and CRISPR F0 knockout (KO) approaches to assess compound loss-of-function phenotypes. We discovered that the Acvr2 homologs function partly redundantly and partially independently of Nodal to pattern the early zebrafish embryo, whereas the Type I receptors Acvr1b-a and Acvr1b-b redundantly act as major mediators of Nodal signaling. By combining quantitative analyses with expression manipulations, we found that feedback-regulated Type I receptors and co-receptors can directly influence the diffusion and distribution of Nodals, providing a mechanism for the spatial restriction of Nodal signaling during germ layer patterning.<br />This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 637840 (QUANTPATTERN) and grant agreement No 863952 (ACE-OF-SPACE)). This work was also funded by the Max Planck Society and the International Max Planck Research School “From Molecules to Organisms”.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....866b1fcb54cc0d405d5660c7631ac2d3