Back to Search
Start Over
Evolutionary and phylogenetic insights from a nuclear genome sequence of the extinct, giant ‘subfossil’ koala lemur Megaladapis edwardsi
- Source :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Year :
- 2020
- Publisher :
- Cold Spring Harbor Laboratory, 2020.
-
Abstract
- Significance Based on “subfossil” skeletal remains it is known that multiple now-extinct giant lemur (primate) species with estimated body masses of up to ∼160 kg survived on Madagascar into the past millennium. In this study, we used ancient DNA methods to sequence the nuclear genome of one of these megafaunal lemurs, Megaladapis edwardsi (∼85 kg). With the power of the nuclear genome, we robustly resolved the phylogenetic relationship between Megaladapis and other lemurs, which had been a lingering uncertainty. We also identified multiple signatures of past positive natural selection across the M. edwardsi genome that support reconstructions of this taxon as a large-bodied, specialized folivore.<br />No endemic Madagascar animal with body mass >10 kg survived a relatively recent wave of extinction on the island. From morphological and isotopic analyses of skeletal “subfossil” remains we can reconstruct some of the biology and behavioral ecology of giant lemurs (primates; up to ∼160 kg) and other extraordinary Malagasy megafauna that survived into the past millennium. Yet, much about the evolutionary biology of these now-extinct species remains unknown, along with persistent phylogenetic uncertainty in some cases. Thankfully, despite the challenges of DNA preservation in tropical and subtropical environments, technical advances have enabled the recovery of ancient DNA from some Malagasy subfossil specimens. Here, we present a nuclear genome sequence (∼2× coverage) for one of the largest extinct lemurs, the koala lemur Megaladapis edwardsi (∼85 kg). To support the testing of key phylogenetic and evolutionary hypotheses, we also generated high-coverage nuclear genomes for two extant lemurs, Eulemur rufifrons and Lepilemur mustelinus, and we aligned these sequences with previously published genomes for three other extant lemurs and 47 nonlemur vertebrates. Our phylogenetic results confirm that Megaladapis is most closely related to the extant Lemuridae (typified in our analysis by E. rufifrons) to the exclusion of L. mustelinus, which contradicts morphology-based phylogenies. Our evolutionary analyses identified significant convergent evolution between M. edwardsi and an extant folivore (a colobine monkey) and an herbivore (horse) in genes encoding proteins that function in plant toxin biodegradation and nutrient absorption. These results suggest that koala lemurs were highly adapted to a leaf-based diet, which may also explain their convergent craniodental morphology with the small-bodied folivore Lepilemur.
- Subjects :
- Lemur
Extinction, Biological
Evolution, Molecular
Lemuridae
biology.animal
Convergent evolution
Animals
Eulemur rufifrons
Herbivory
megafaunal extinction
convergent evolution
Amino Acids
dietary reconstruction
Phylogeny
Cell Nucleus
Multidisciplinary
Genome
Subfossil
Base Sequence
biology
Phylogenetic tree
phylogenomics
Genomics
Biological Sciences
biology.organism_classification
Megaladapis
paleogenomics
Ancient DNA
Evolutionary biology
Anthropology
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Accession number :
- edsair.doi.dedup.....866a8584b0fbf3c45db40fc5eb473109