Back to Search Start Over

Imaginary quadratic fields with isomorphic abelian Galois groups

Authors :
Athanasios Angelakis
Peter Stevenhagen
Lithe and fast algorithmic number theory (LFANT)
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Mathematical institute
Universiteit Leiden [Leiden]
Everett W. Howe and Kiran S. Kedlaya
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Universiteit Leiden
Source :
ANTS X-Tenth Algorithmic Number Theory Symposium, ANTS X-Tenth Algorithmic Number Theory Symposium, Jul 2012, San Diego, United States. pp.21-39, ⟨10.2140/obs.2013.1.21⟩
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

In 1976, Onabe discovered that, in contrast to the Neukirch-Uchida results that were proved around the same time, a number field $K$ is not completely characterized by its absolute abelian Galois group $A_K$. The first examples of non-isomorphic $K$ having isomorphic $A_K$ were obtained on the basis of a classification by Kubota of idele class character groups in terms of their infinite families of Ulm invariants, and did not yield a description of $A_K$. In this paper, we provide a direct `computation' of the profinite group $A_K$ for imaginary quadratic $K$, and use it to obtain many different $K$ that all have the same minimal absolute abelian Galois group.<br />Comment: 17 pages; to appear in the proceedings volume of ANTS-X, San Diego 2012

Details

Language :
English
Database :
OpenAIRE
Journal :
ANTS X-Tenth Algorithmic Number Theory Symposium, ANTS X-Tenth Algorithmic Number Theory Symposium, Jul 2012, San Diego, United States. pp.21-39, ⟨10.2140/obs.2013.1.21⟩
Accession number :
edsair.doi.dedup.....8665edc4596cd42190cb8bf7d4d79b73