Back to Search
Start Over
A class of hypersurfaces in $ \mathbb{E}^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda\vec{H} $
- Source :
- AIMS Mathematics, Vol 7, Iss 1, Pp 39-53 (2022)
- Publication Year :
- 2022
- Publisher :
- AIMS Press, 2022.
-
Abstract
- A nondegenerate hypersurface in a pseudo-Euclidean space $ \mathbb{E}^{n+1}_{s} $ is called to have proper mean curvature vector if its mean curvature $ \vec{H} $ satisfies $ \Delta \vec{H} = \lambda \vec{H} $ for a constant $ \lambda $. In 2013, Arvanitoyeorgos and Kaimakamis conjectured [1]: any hypersurface satisfying $ \Delta \vec{H} = \lambda \vec{H} $ in pseudo-Euclidean space $ \mathbb E_{s}^{n+1} $ has constant mean curvature. This paper will give further support evidences to this conjecture by proving that a linear Weingarten hypersurface $ M^{n}_{r} $ in $ \mathbb E^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda \vec{H} $ has constant mean curvature if $ M^{n}_{r} $ has diagonalizable shape operator with less than seven distinct principal curvatures.
- Subjects :
- Physics
Class (set theory)
Mean curvature
Conjecture
principal curvatures
General Mathematics
linear weingarten hypersurfaces
Diagonalizable matrix
Space (mathematics)
Lambda
Combinatorics
Hypersurface
Principal curvature
QA1-939
Mathematics::Differential Geometry
proper mean curvature vector
Nuclear Experiment
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 24736988
- Volume :
- 7
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- AIMS Mathematics
- Accession number :
- edsair.doi.dedup.....864ea5c432c26ec868dc1f82b671e310