Back to Search Start Over

A class of hypersurfaces in $ \mathbb{E}^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda\vec{H} $

Authors :
Jinchao Yu
Dan Yang
Xiaoying Zhu
Jingjing Zhang
Source :
AIMS Mathematics, Vol 7, Iss 1, Pp 39-53 (2022)
Publication Year :
2022
Publisher :
AIMS Press, 2022.

Abstract

A nondegenerate hypersurface in a pseudo-Euclidean space $ \mathbb{E}^{n+1}_{s} $ is called to have proper mean curvature vector if its mean curvature $ \vec{H} $ satisfies $ \Delta \vec{H} = \lambda \vec{H} $ for a constant $ \lambda $. In 2013, Arvanitoyeorgos and Kaimakamis conjectured [1]: any hypersurface satisfying $ \Delta \vec{H} = \lambda \vec{H} $ in pseudo-Euclidean space $ \mathbb E_{s}^{n+1} $ has constant mean curvature. This paper will give further support evidences to this conjecture by proving that a linear Weingarten hypersurface $ M^{n}_{r} $ in $ \mathbb E^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda \vec{H} $ has constant mean curvature if $ M^{n}_{r} $ has diagonalizable shape operator with less than seven distinct principal curvatures.

Details

Language :
English
ISSN :
24736988
Volume :
7
Issue :
1
Database :
OpenAIRE
Journal :
AIMS Mathematics
Accession number :
edsair.doi.dedup.....864ea5c432c26ec868dc1f82b671e310