Back to Search
Start Over
All-Optical Noise Spectroscopy of a Solid-State Spin
- Source :
- Nano Letters. 23:1781-1786
- Publication Year :
- 2023
- Publisher :
- American Chemical Society (ACS), 2023.
-
Abstract
- Noise spectroscopy elucidates the fundamental noise sources in spin systems, which is essential for developing spin qubits with long coherence times for quantum information processing, communication, and sensing. But noise spectroscopy typically relies on microwave coherent spin control to extract the noise spectrum, which becomes infeasible when there are high-frequency noise components stronger than the available microwave power. Here, we demonstrate an alternative all-optical approach to performing noise spectroscopy. Our approach utilises coherent Raman rotations of the spin state with controlled timing and phase to implement Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences. Analysing the spin dynamics under these sequences enables us to extract the noise spectrum of a dense ensemble of nuclear spins interacting with a single spin in a quantum dot, which has thus far only been modelled theoretically. By providing large spectral bandwidths of over 100 MHz, our Raman-based approach could serve as an important tool to study spin dynamics and decoherence mechanisms for a broad range of solid-state spin qubits.
- Subjects :
- Physics
Quantum Physics
Quantum decoherence
Spin states
Spins
Condensed Matter - Mesoscale and Nanoscale Physics
Mechanical Engineering
FOS: Physical sciences
Bioengineering
General Chemistry
Condensed Matter Physics
Noise (electronics)
3. Good health
Computational physics
Quantum dot
Qubit
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
General Materials Science
Quantum Physics (quant-ph)
Coherence (physics)
Spin-½
Subjects
Details
- ISSN :
- 15306992 and 15306984
- Volume :
- 23
- Database :
- OpenAIRE
- Journal :
- Nano Letters
- Accession number :
- edsair.doi.dedup.....863a5548f0f0a74e05c357cd21788480