Back to Search Start Over

Strong Semiclassical Approximation of Wigner Functions for the Hartree Dynamics

Authors :
Agissilaos Athanassoulis
Thierry Paul
Federica Pezzotti
Mario Pulvirenti
Athanassoulis, Agissilaos
Centre de Mathématiques Laurent Schwartz (CMLS)
Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
Department of Applied Mathematics [Heraklion]
University of Crete [Heraklion] (UOC)
Departamento de Matematicas
Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU)
Dipartimento di Matematica 'Guido Castelnuovo' [Roma I] (Sapienza University of Rome)
Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome]
Source :
Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2011, 22 (4), pp.525-552
Publication Year :
2010
Publisher :
HAL CCSD, 2010.

Abstract

We consider the Wigner equation corresponding to a nonlinear Schroedinger evolution of the Hartree type in the semiclassical limit $\hbar\to 0$. Under appropriate assumptions on the initial data and the interaction potential, we show that the Wigner function is close in $L^2$ to its weak limit, the solution of the corresponding Vlasov equation. The strong approximation allows the construction of semiclassical operator-valued observables, approximating their quantum counterparts in Hilbert-Schmidt topology. The proof makes use of a pointwise-positivity manipulation, which seems necessary in working with the $L^2$ norm and the precise form of the nonlinearity. We employ the Husimi function as a pivot between the classical probability density and the Wigner function, which -- as it is well known -- is not pointwise positive in general.<br />Comment: 24 pages

Details

Language :
English
Database :
OpenAIRE
Journal :
Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2011, 22 (4), pp.525-552
Accession number :
edsair.doi.dedup.....85f2b2a47f3429b96ce9b761312108fc