Back to Search
Start Over
Strong Semiclassical Approximation of Wigner Functions for the Hartree Dynamics
- Source :
- Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2011, 22 (4), pp.525-552
- Publication Year :
- 2010
- Publisher :
- HAL CCSD, 2010.
-
Abstract
- We consider the Wigner equation corresponding to a nonlinear Schroedinger evolution of the Hartree type in the semiclassical limit $\hbar\to 0$. Under appropriate assumptions on the initial data and the interaction potential, we show that the Wigner function is close in $L^2$ to its weak limit, the solution of the corresponding Vlasov equation. The strong approximation allows the construction of semiclassical operator-valued observables, approximating their quantum counterparts in Hilbert-Schmidt topology. The proof makes use of a pointwise-positivity manipulation, which seems necessary in working with the $L^2$ norm and the precise form of the nonlinearity. We employ the Husimi function as a pivot between the classical probability density and the Wigner function, which -- as it is well known -- is not pointwise positive in general.<br />Comment: 24 pages
- Subjects :
- semiclassical analysis
husimi transform
hartree dynamics
wigner formalism
business.industry
81Q20, 81S30, 81Q05
General Mathematics
010102 general mathematics
Semiclassical physics
FOS: Physical sciences
Hartree
Mathematical Physics (math-ph)
[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]
01 natural sciences
Theoretical physics
Mathematics - Analysis of PDEs
Hospitality
0103 physical sciences
FOS: Mathematics
010307 mathematical physics
0101 mathematics
[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP]
[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]
business
Mathematical Physics
ComputingMilieux_MISCELLANEOUS
Mathematics
Analysis of PDEs (math.AP)
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2011, 22 (4), pp.525-552
- Accession number :
- edsair.doi.dedup.....85f2b2a47f3429b96ce9b761312108fc