Back to Search Start Over

Influence of Lipid Composition on Membrane Activity of Antimicrobial Phenylene Ethynylene Oligomers

Authors :
Abhigyan Som
Gregory N. Tew
Source :
The Journal of Physical Chemistry B. 112:3495-3502
Publication Year :
2008
Publisher :
American Chemical Society (ACS), 2008.

Abstract

Host defense peptides (HDPs), part of the innate immune system, selectively target the membranes of bacterial cells over that of host cells. As a result, their antimicrobial properties have been under intense study. Their selectivity strongly depends on the chemical and mostly structural properties of the lipids that make up different cell membranes. The ability to synthesize HDP mimics has recently been demonstrated. To better understand how these HDP mimics interact with bilayer membranes, three homologous antimicrobial oligomers (AMOs) 1–3 with an m-phenylene ethynylene backbone and alkyl amine side chains were studied. Among them, AMO 1 is nonactive, AMO 2 is specifically active, and AMO 3 is nonspecifically active against bacteria over human red blood cells, a standard model for mammalian cells. The interactions of these three AMOs with liposomes having different lipid compositions are characterized in detail using a fluorescent dye leakage assay. AMO 2 and AMO 3 caused more leakage than AMO 1 from bacteria membrane mimic liposomes composed of PE/PG lipids. The use of E. coli lipid vesicles gave the same results. Further changes of the lipid compositions revealed that AMO 2 has selectively higher affinity toward PE/PG and E. coli lipids than PC, PC/PG or PC/PS lipids, the major components of mammalian cell membranes. In contrast, AMO 3 is devoid of this lipid selectivity and interacts with all liposomes with equal ease; AMO 1 remains inactive. These observations suggest that lipid type and structure are more important in determining membrane selectivity than lipid headgroup charges for this series of HDP mimics.

Details

ISSN :
15205207 and 15206106
Volume :
112
Database :
OpenAIRE
Journal :
The Journal of Physical Chemistry B
Accession number :
edsair.doi.dedup.....85ecc6b55786cc3df9230a5444f37c58
Full Text :
https://doi.org/10.1021/jp077487j