Back to Search Start Over

Increased activity of CHK enhances the radioresistance of MCF-7 breast cancer stem cells

Increased activity of CHK enhances the radioresistance of MCF-7 breast cancer stem cells

Authors :
Jian‑Gang He
Hua Cao
Guo‑Qin Jiang
Zhi‑Xue Yang
Yi‑Hui Sun
Source :
Oncology Letters
Publication Year :
2015
Publisher :
Spandidos Publications, 2015.

Abstract

The resistance of breast cancer to radiotherapy remains a major obstacle to successful cancer management. Radiotherapy may result in DNA damage and activate breast cancer stem cells. DNA damage may lead to activation of the checkpoint kinase (CHK) signaling pathway, of which debromohymenialdisine (DBH) is a specific inhibitor. Radiotherapy also increases the expression of phosphorylated CHK1/2 (pCHK1/2) in the breast cancer cell line, MCF-7, in vitro in a dose-dependent manner. DBH is a relatively stable effective inhibitor that significantly reduces pCHK1/2 expression and MCF-7 proliferation. Low-dose radiotherapy combined with DBH resulted in a higher MCF-7 inhibition rate compared with high-dose radiation alone. This result indicates that the inhibition of the CHK1/2 signal pathway may significantly reduce DNA damage within radiated cells. Radiotherapy may also regulate the proportion of CD44+/CD24− MCF-7 cancer stem cells in a dose- and time-dependent manner. However, the stem cell proportion of MCF-7 cells was significantly reduced by treatment with DBH. The inhibition is relatively stable and time dependent. Significant reductions were observed after 3 days of culture (P

Details

ISSN :
17921082 and 17921074
Volume :
10
Database :
OpenAIRE
Journal :
Oncology Letters
Accession number :
edsair.doi.dedup.....85d16b9d603a2c9576fb9041a77bfb24
Full Text :
https://doi.org/10.3892/ol.2015.3777